Online Appendix

Forward-Looking Behavior in Mobile Data Consumption and Targeted Promotion Design: A Dynamic Structural Model

Lizhen Xu, Jason A. Duan, Yu (Jeffrey) Hu
Yuan Cheng, Yan Zhu

A Proofs of Propositions in Section 5.1

To simplify notations, without causing confusion, below we suppress subscripts i and t. Also notice that throughout all the proofs below, wherever *strict* monotonicity or concavity applies, we explicitly stress it; without explicit stress of strictness, we mean weak monotonicity/concavity.

Proof of Proposition 1. Myopic users determine their daily usage by maximizing the period utility only, which is defined in (1). The optimal daily usage a^* can thus be derived as

$$a^* = \begin{cases}
\mu + \xi - \eta p (> q) & \text{if } 0 < q < \mu + \xi \leq \eta p \\
q & \text{if } \mu + \xi \leq q \leq \mu + \xi \\
\max \{\mu + \xi, 0\} (< q) & \text{if } q > \mu + \xi
\end{cases} \quad (A.1)$$

In any day before the day when the data plan quota is fully expended, $a^* = \max \{\mu + \xi, 0\} (< q)$, which is obviously independent of q. Q.E.D.

In order to prove Proposition 2, we first prove two key lemmas with regard to the properties of the expected value function $\bar{V}(q, d)$ as defined in (5).

Lemma A.1. *For the last period, the expected value function $\bar{V}(q, d = 1)$ is continuous, increasing, differentiable, and strictly concave in the remaining data plan quota q.***

Proof. Recall that in the last period,

$$V(q, d = 1, \xi) = \max_{a \geq 0} \left[(\mu + \xi) a - \frac{1}{2} a^2 - \eta p \max \{a - q, 0\} \right] \quad (A.2)$$
We can thus explicitly solve the value function as

\[
V(q, d = 1, \xi) = \begin{cases}
\frac{1}{2} (\mu + \xi - \eta p)^2 + \eta p q & \text{if } 0 \leq q < \mu + \xi - \eta p \\
(\mu + \xi) q - \frac{1}{2} q^2 & \text{if } \mu + \xi - \eta p \leq q \leq \mu + \xi \\
\frac{1}{2} (\max \{\mu + \xi, 0\})^2 & \text{if } q > \mu + \xi,
\end{cases}
\]

(A.3)

where \(q \geq 0\). It is easy to show that \(V(q, d = 1, \xi)\) is continuous, increasing, differentiable, and concave in \(q\) given any \(\xi\). The continuity can be easily verified by checking the function value at each endpoint. (Notice that because \(q \geq 0\), if \(\mu + \xi - \eta p < \mu + \xi < 0\), only the third segment applies and (A.3) reduces to a constant so that \(V(q, d = 1, \xi) \equiv 0\) for all \(q \geq 0\); if \(\mu + \xi - \eta p < 0 < \mu + \xi\), (A.3) reduces to two segments.) The monotonicity is immediate because the piecewise function is continuous and piecewise increasing in \(q\). \(V(q, d = 1, \xi)\) is differentiable because the left and right derivatives are equal at each endpoint: \(\frac{\partial}{\partial q} V_{q \rightarrow (\mu + \xi - \eta p)^+} (q, d = 1, \xi) = \frac{\partial}{\partial q} V_{q \rightarrow (\mu + \xi - \eta p)^-} (q, d = 1, \xi) = \eta p\), and \(\frac{\partial}{\partial q} V_{q \rightarrow (\mu + \xi)^+} (q, d = 1, \xi) = \frac{\partial}{\partial q} V_{q \rightarrow (\mu + \xi)^-} (q, d = 1, \xi) = 0\). \(V(q, d = 1, \xi)\) is concave in \(q\) because it is differentiable and piecewise concave in \(q\).

Given that \(V(q, d = 1, \xi)\) is continuous, increasing, and differentiable in \(q\) for any \(\xi\), it is immediate that the expected value function \(\bar{V}(q, d) = E_\xi V(q, d, \xi)\), as an integral over all \(\xi\), is also continuous, increasing, and differentiable in \(q\).

To show that \(\bar{V}(q, d)\) is strictly concave in \(q\), note that because \(V(q, d = 1, \xi)\) is concave in \(q\), by the definition of concavity, for any \(q_1, q_2 > 0\) and \(\lambda \in (0, 1)\), we have

\[
V((1 - \lambda) q_1 + \lambda q_2, d = 1, \xi) \geq (1 - \lambda) V(q_1, d = 1, \xi) + \lambda V(q_2, d = 1, \xi)
\]

(A.4)

for any \(\xi\). Because \(V(q, d = 1, \xi)\) is strictly concave in the second segment in (A.3), strict inequality holds in (A.4) when \(\xi \in (-\mu + q_1, -\mu + q_1 + \eta p) \cup (-\mu + q_2, -\mu + q_2 + \eta p)\). Recall that \(\xi\) is a random variable with a continuous support over the entire real field. Therefore, when taking expectation over \(\xi\) on both sides of (A.4), we have

\[
E_\xi V((1 - \lambda) q_1 + \lambda q_2, d = 1, \xi) > (1 - \lambda) E_\xi V(q_1, d = 1, \xi) + \lambda E_\xi V(q_2, d = 1, \xi),
\]

(A.5)

which shows \(\bar{V}(q, d = 1)\) is strictly concave in \(q\). Q.E.D.
Lemma A.2. If the expected value function for the next period, $\bar{V}(q', d - 1)$, is continuous, increasing, differentiable, and strictly concave in q', then the expected value function for the current period, $\bar{V}(q, d)$, is also continuous, increasing, differentiable, and strictly concave in q.

Proof. We first show that given any ξ, the value function $V(q, d, \xi)$ is continuous, increasing, differentiable, and concave in q if $\bar{V}(q', d - 1)$ is continuous, increasing, differentiable, and strictly concave in q'. Substituting (1) and (3) into (4), we can rewrite the current-period value function as

$$V(q, d, \xi) = \max_{a \geq 0} \left[(\mu + \xi) a - \frac{1}{2} a^2 - \eta \beta [a - q] + \beta \bar{V}(q - a, d - 1) \right], \quad (A.6)$$

where $[\cdot]^+$ stands for $\max\{\cdot, 0\}$. To simplify notation, we use $\bar{V}(q, d)$ to represent $\frac{\partial}{\partial q} \bar{V}(q, d)$ for the rest of this proof.

Let \tilde{a} be the solution to the first order condition (with respect to a) when $a < q$, that is,

$$\mu + \xi - \tilde{a} - \beta \bar{V}(q - \tilde{a}, d - 1) = 0 \quad (A.7)$$

Therefore, $\tilde{a} < q$ if and only if $\mu + \xi - q - \beta \bar{V}(0, d - 1) < 0$. When $a > q$, the first order condition yields

$$\mu + \xi - a^* - \eta \beta \bar{V}(0, d - 1) = 0. \quad (A.8)$$

$a^* > q$ if and only if $\mu + \xi - q - \eta \beta \bar{V}(0, d - 1) > 0$. Notice that $\beta \bar{V}(0, d - 1) < \eta \beta$ given $\beta < 1$. Therefore, we can summarize the optimal usage in the current period as

$$a^*(q, d, \xi) = \begin{cases}
\mu + \xi - \eta \beta (q) & \text{if } 0 \leq q < \mu + \xi - \eta \beta \\
q & \text{if } \mu + \xi - \eta \beta \leq q \leq \mu + \xi - \beta \bar{V}(0, d - 1) \\
\max\{\tilde{a}, 0\} & \text{if } q > \mu + \xi - \beta \bar{V}(0, d - 1)
\end{cases} \quad (A.9)$$

Again, because $q \geq 0$, if $\mu + \xi - \beta \bar{V}(0, d - 1) < 0$ or $\mu + \xi - \eta \beta < 0$, (A.9) reduces to one or two
segments only. Accordingly, the current-period value function can be written as

\[
V(q, d, \xi) = \begin{cases}
\frac{1}{2} (\mu + \xi - \eta \bar{p})^2 + \eta \bar{p}q + \beta \bar{V} (0, d - 1) & \text{if } 0 \leq q < \mu + \xi - \eta \bar{p} \\
(\mu + \xi) q - \frac{1}{2} q^2 + \beta \bar{V} (0, d - 1) & \text{if } \mu + \xi - \eta \bar{p} \leq q \leq \mu + \xi - \beta \bar{V} q (0, d - 1) \\
F(q; \xi) & \text{if } q > \mu + \xi - \beta \bar{V} q (0, d - 1),
\end{cases}
\]

(A.10)

where \(F(q; \xi) \) is defined by substituting the optimal usage \(a^* = \max \{ \bar{a}, 0 \} \) (< \(q \)) into (A.6), that is,

\[
F(q; \xi) = (\mu + \xi) a^* - \frac{1}{2} a^*^2 + \beta \bar{V} (q - a^*, d - 1).
\]

(A.11)

It is easy to show that \(V(q, d, \xi) \) is continuous in \(q \) by verifying the continuity of function value at the endpoints: for example, when \(q = \mu + \xi - \beta \bar{V} q (0, d - 1) \), \(a^* = q \) so \(F(q; \xi) = (\mu + \xi) q - \frac{1}{2} q^2 + \beta \bar{V} (0, d - 1) \). To show that \(V(q, d, \xi) \) is increasing in \(q \), we just need to show \(F(q; \xi) \) is increasing in \(q \), because it is obviously true for the first two segments of (A.10). Taking derivative with respect to \(q \) on both sides of (A.11), by Envelope Theorem, we have

\[
F_q(q; \xi) = \beta \bar{V}_q (q - a^*, d - 1) \geq 0,
\]

(A.12)

because \(\bar{V} (q', d - 1) \) is increasing in \(q' \). Therefore, \(F(q; \xi) \) is increasing in \(q \); so is \(V(q, d, \xi) \).

It is easy to show that \(V(q, d, \xi) \) is differentiable in \(q \), noticing that

\[
\frac{\partial}{\partial q} V_{q \rightarrow (\mu + \xi - \beta \bar{V} (0, d - 1))} (q, d, \xi) = \beta \bar{V}_q (0, d - 1)
\]

(A.13)

\[
\frac{\partial}{\partial q} V_{q \rightarrow (\mu + \xi - \beta \bar{V} (0, d - 1))}^+ (q, d, \xi) = F_q(q; \xi) = \beta \bar{V}_q (0, d - 1),
\]

(A.14)

where (A.14) holds by (A.12) and the fact that \(a^* = q \) when \(q = \mu + \xi - \beta \bar{V} q (0, d - 1) \).

We next show that \(V(q, d, \xi) \) is concave in \(q \). It is obvious that \(V(q, d, \xi) \) is concave when \(0 \leq q < \mu + \xi - \eta \bar{p} \) and strictly concave when \(\mu + \xi - \eta \bar{p} \leq q \leq \mu + \xi - \beta \bar{V} q (0, d - 1) \). Given that \(V(q, d, \xi) \) is differentiable in \(q \), therefore, we only need to show that \(F(q; \xi) \) is (strictly) concave in \(q \) for \(q > \mu + \xi - \beta \bar{V} q (0, d - 1) \).

We prove by the definition of concavity. Consider any \(q_1, q_2 \geq \max \{ \mu + \xi - \beta \bar{V} q (0, d - 1), 0 \} \),
let \(\hat{q}_1 = q_1 - a^* (q_1) \) and \(\hat{q}_2 = q_2 - a^* (q_2) \). In other words, we use \(^*\) to represent the remaining quota at the beginning of the next period as a result of the optimal amount of usage in the current period. Note that \(0 \leq \hat{q}_1 \leq q_1 \) and \(0 \leq \hat{q}_2 \leq q_2 \). Denote \(\bar{q} = \lambda q_1 + (1 - \lambda) q_2 \) and \(\tilde{q} = \lambda \hat{q}_1 + (1 - \lambda) \hat{q}_2 \) for \(\forall \lambda \in (0, 1) \). Clearly, \(0 \leq \tilde{q} \leq \bar{q} \). In addition, define \(U \left(q, q' \right) = (\mu + \xi) \left(q - q' \right) - \frac{1}{2} (q - q')^2 \). It is easy to show that \(U \left(q, q' \right) \) is concave in \((q, q') \) because it is a quadratic function with a negative semidefinite Hessian matrix. Hence, \(F (\hat{q}, \xi) \) from (A.11) can be rewritten as

\[
F (\hat{q}; \xi) = U (\tilde{q}, \hat{q}) + \beta \tilde{V} (\hat{q}, d - 1) \\
\geq U (\bar{q}, \hat{q}) + \beta \tilde{V} (\hat{q}, d - 1) \\
\geq \lambda U (q_1, \hat{q}_1) + (1 - \lambda) U (q_2, \hat{q}_2) + \beta \tilde{V} (\hat{q}, d - 1) \\
\geq \lambda U (q_1, \hat{q}_1) + (1 - \lambda) U (q_2, \hat{q}_2) + \beta \lambda \tilde{V} (\hat{q}_1, d - 1) + \beta (1 - \lambda) \tilde{V} (\hat{q}_2, d - 1) \\
= \lambda F (q_1; \xi) + (1 - \lambda) F (q_2; \xi) \tag{A.15}
\]

The first inequality in (A.15) holds because of the optimality of \(\hat{q} \); the second inequality holds because of the concavity of \(U \left(q, q' \right) \) in \((q, q') \); the third (strict) inequality holds because of the strict concavity of \(\tilde{V} \left(q', d - 1 \right) \) in \(q' \). As a result, \(F (q; \xi) \) is strictly concave in \(q \) for any \(q \geq \max \left\{ \mu + \xi - \beta \tilde{V}_q \left(0, d - 1 \right), 0 \right\} \). Therefore, \(V (q, d, \xi) \) is concave in \(q \) for any \(q \geq 0 \) and strictly concave if \(q \geq \mu + \xi - \eta p \).

Given we have shown that \(V (q, d, \xi) \) is continuous, increasing, differentiable, and concave in \(q \) for any \(\xi \), and it is strictly concave in \(q \) when \(\xi < -\mu + q + \eta p \), following the same logic as the last part of the proof of Lemma A.1, we conclude that \(\tilde{V} \left(q', d - 1 \right) = E_\xi V \left(q, d, \xi \right) \) is continuous, increasing, differentiable, and strictly concave in \(q \). Q.E.D.

Proof of Proposition 2. Recall the optimal usage \(a^* (q, d, \xi) \) derived in (A.9) for any \(d \geq 2 \). In any day before the day when the data plan quota is fully expended, \(a^* (q, d, \xi) = \max \{ \bar{a}, 0 \} < q \). We want to show that \(\bar{a} \), the solution to (A.7), is strictly increasing in \(q \).

Recall that \(\bar{a} (q) \) solves the first order condition

\[
\mu + \xi - \bar{a} (q) - \beta \tilde{V}_q (q - \bar{a} (q), d - 1) = 0 \tag{A.16}
\]
By Lemma A.1 and Lemma A.2, the expected value function $\bar{V}(\cdot, \cdot)$ is increasing and strictly concave in the remaining quota for any period. Therefore, for any $q' > q$,

$$
\mu + \xi - \bar{a}(q) - \beta \bar{V}_q(q' - \bar{a}(q), d - 1) > 0
$$

(A.17)

because $\bar{V}_q(q' - \bar{a}(q), d - 1) < \bar{V}_q(q - \bar{a}(q), d - 1)$ given the strict concavity of $\bar{V}(\cdot, d - 1)$. As a result, $\bar{a}(q') > \bar{a}(q)$. Therefore, \bar{a} is strictly increasing in q, which implies $a^*(q, d, \xi) = \max\{\bar{a}, 0\}$ is strictly increasing in q if $0 < a^* < q$. Q.E.D.