Generalized Aharonov-Bohm effect and topological states in graphene *nanorings*: Particle-physics analogies *beyond* the massless Dirac fermion

Constantine Yannouleas, Igor Romanovsky, and Uzi Landman

School of Physics, Georgia Institute of Technology

APS March 2013

Supported by the U.S. DOE (FG05-86ER45234)
Hexagon vs. Triangle

臂折

$w=14$

Tight Binding (TB)

Same Edge

Different Shape

$\times 10^{-2}$

$\varepsilon(t)$

Φ/Φ_0

δ_1

δ_2

2718

2142

(a)

(b)

(c)

Δ_0
Tight Binding (TB)

Armchair vs. Zigzag

Hexagon

Same Shape
Different Edge

w=14

w=16
1D Generalized Dirac equation

\[[E - V(x)] \Psi + i\hbar v_F \alpha \frac{\partial \Psi}{\partial x} - \beta \phi(x) \Psi = 0 \]

\[\Psi = \begin{pmatrix} \psi_u \\ \psi_l \end{pmatrix} \]

Dirac-Kronig-Penney Superlattice

a single side/ 3 regions

\((V1, m1)\) \hspace{1cm} \((V2, m2)\) \hspace{1cm} \((V3, m3)\)

Transfer matrix method

\[
\Omega_K(x) = \begin{pmatrix}
ed^{iKx} & e^{-iKx} \\
\Lambda e^{iKx} & -\Lambda e^{-iKx}
\end{pmatrix}
\]

\[K^2 = \frac{(E - V)^2 - m^2v_F^4}{\hbar^2 v_F^2} \]

\[\Lambda = \frac{\hbar v_F K}{E - V + mv_F^2} \]
DKP Results: Hexagon/ armchair

$m_0 = 0$

$m_0 = 0.01t/v_F^2$

$m_0 = 0.30t/v_F^2$

Polyacetylene

Dimerization/ Kekule

TB results

Two Domains

Corner

Domain Wall
DKP Results: Triangle/ armchair

$m_0 = 0$

$m_0 = 0.02t/v_F^2$

TB results

One Domain

Polyacetylene

Corner/ scatterer
DKP Results: Hexagon/ zigzag

\[\tilde{E}(t) = E - \mathcal{M}v_F^2 \]

\[\mathcal{M} = \frac{42.06t}{v_F^2} \]

\[\mathcal{M}_e = \frac{(2.10t)}{v_F^2} \]

nonrelativistic behavior similar to the 1D quantum ring in the reczag trigonal flake
Relativistic quantum-field-theory Lagrangian

\[\mathcal{L} = \mathcal{L}_f + \mathcal{L}_\phi \]

\[\mathcal{L}_f = -i \hbar \Psi^\dagger \frac{\partial}{\partial t} \Psi - i \hbar v_F \Psi^\dagger \alpha \frac{\partial}{\partial x} \Psi - \phi \Psi^\dagger \beta \Psi \]

\[\Psi = \begin{pmatrix} \psi_u \\ \psi_l \end{pmatrix} \]

\(\alpha \) and \(\beta \): any two of the three 2x2 Pauli matrices

electrostatic potential

scalar field / position-dependent mass \(m(x) \)

Yukawa coupling

fermionic
scalar field

\[\mathcal{L}_\phi = -\frac{1}{2} \left(\frac{\partial \phi}{\partial x} \right)^2 - V(\phi) \]

\[V(\phi) = \frac{\xi}{4} (\phi^2 - \zeta^2)^2 \]

Euler-Lagrange equation

\[-\frac{\partial^2 \phi}{\partial x^2} + \xi (\phi^2 - \zeta^2) \phi = 0 \]

1. \(\phi_0 \) (Symmetry breaking)/ constant mass Dirac fermion

2. kink soliton/ zero-energy fermionic soliton

kink soliton

\[\phi_k(x) = \zeta \tanh \left(\sqrt{\frac{\xi}{2}} \zeta x \right) \]

zero-energy fermionic soliton (Dirac eq.)

\[\Psi_S(x) \propto \left(\exp \left(-\int_0^x \phi_k(x')dx' \right) \right) \]
Conclusions

1) The 1D Dirac-Kronig-Penney superlattice model provides a unifying interpretation of the tight-binding spectra (as a function of B) of planar graphene rings.

2) The spectra are sensitive to the topology (edge and shape) of the rings.

3) In the DKP, the topology is captured by general, position-dependent scalar fields (mass terms), beyond the massless Dirac-Weyl fermion.

4) A Lagrangian formalism establishes rich analogies with 1D quantum-field theories, e.g., fermionic solitons, mass generation, nonrelativistic behavior.
Aharonov-Bohm oscillations

Armchair (linear)

Zigzag (quadratic)