
Constantine Yannouleas and Uzi Landman
School of Physics, Georgia Institute of Technology

NMP14, 5-9 May 2014 Supported by the U.S. DOE (FG05-86ER45234)
Mesoscopics:

“The area of condensed-matter physics that covers the transition regime between macroscopic objects and the microscopic, atomic world.”

TU Delft course

Finite-size condensed-matter nanosystems
(small systems and transition to the bulk)

Nuclear analogies (nonrelativistic electrons/ Schrödinger equation):
(3D) metal clusters, metal grains, fullerenes;
(2D) quantum billiards, quantum dots; quantum islands;
(1D) quantum-point contacts, nanowires, quantum rings, interferometers

Particle-physics analogies (relativistic electrons/ Dirac equation):
Graphene-based nanosystems:
(2D) graphene quantum dots;
(1D) uniform and segmented graphene nanoribbons (junctions),
graphene polygonal rings
FIRST PART

Some examples (among many, e.g., random matrix theory) of nuclear analogies

(from personal experience)

In this talk: Emphasis on broader qualitative aspects and not on mathematical theoretical formulation

Collaborators: Uzi Landman, Igor Romanovsky, Yuesong Li, Ying Li, Leslie Baksmaty, R.N. Barnett
Three (among others) major nuclear aspects:

- **Electronic shells/deformation/fission** (via Strutinsky/Shell correction approach) in metal clusters [see, e.g., Yannouleas, Landman, Barnett, in “Metal Clusters”, edited by W. Ekardt, John-Wiley, 1999]

- **Surface plasmons/Giant resonances** (via matrix RPA/LDA) in metal clusters [see, e.g., Yannouleas, Broglia, Brack, Bortignon, PRL 63, 255 (1989)]

- **Strongly correlated states (Quantum crystals/Wigner molecules/dissociation)** in 2D semiconductor quantum dots and ultracold bosonic traps via symmetry breaking/symmetry restoration in conjunction with exact diagonalization (full CI) [see, e.g., Yannouleas, Landman, Rep. Prog. Phys. 70, 2067 (2007)]
- Electronic shells/ magic numbers/ deformation/ fission in metal clusters
- Surface plasmons/Giant resonances in metal clusters

The physics of free nonrelativistic electrons confined in a central potential, like atomic nuclei (conservation of symmetries/ independent particle model/ delocalized electrons)

- Strongly correlated states (Quantum crystals/Wigner molecules/dissociation) in 2D semiconductor quantum dots

No central potential/ electron localization (relative to each other) due to strong Coulomb repulsion/ mean-filed with broken symmetries
FIG. 1. SEM image of the gate geometry forming the quantum dot. This geometry enables a precisely known number of electrons ($N=0, 1, 2, \ldots, 50$) to be trapped (Ref. 13) and produces a quasi-parabolic confinement potential. Sweeping the plunger-gate voltage tunes both the shape and the chemical potential of the quantum dot.

Lateral QD (Ottawa)

Vertical QD (Delft)

Electrostatic confinement

Lateral QD Molecule (Delft)
CONTROL PARAMETERS FOR SYMMETRY BREAKING

IN SINGLE QD'S: WIGNER CRYSTALLIZATION

- Essential Parameter at $B=0$: (parabolic confinement)

$$R_W = \left(\frac{e^2}{\kappa I_0} \right)/\hbar\omega_0 \sim 1/\left(\hbar^3 \omega_0 \right)^{1/2}$$

- e-e Coulomb repulsion
- kinetic energy

$$I_0 = \left(\frac{\hbar}{m^*\omega_0} \right)^{1/2}$$

Spatial Extent of 1s s.p. state

κ: dielectric const. (12.9)

m^*: e effective mass $(0.067 m_e)$ GaAS

$\hbar\omega_0 (5 - 1 \text{ meV}) \Rightarrow R_W (1.48 - 3.31)$

- In a magnetic field, essential parameter is B itself

IN QDM'S: DISSOCIATION (Electron puddles, Mott transition)

Essential parameters: Separation (d)
Potential barrier (V_b)
Magnetic field (B)

Exact electron densities are circular! No symmetries are broken!(N, small, large?)

Concentric rings: (0,6) left, (1,5) right

Y&L, PRL 82, 5325 (1999)

Restoration of symmetry ➔ Quantum crystal

Circular external confinement

\[B = 0 \]

\[R_W = 5 \]

Concentric rings: (1,6,12)

Rotating Boson Molecules (Circular trap)
Ground states: Energy, angular momentum and probability densities.

\[R_\delta = 50 \quad R_W = 10 \]

The hidden crystalline structure in the projected function can be revealed through the use of conditional probability density (CPD).

\[
\rho(r | r_0) = \langle \Phi | \sum_{i \neq j} \delta(r_i - r)\delta(r_j - r_0) | \Phi \rangle / \langle \Phi | \Phi \rangle
\]
Three electron anisotropic QD

Method: Exact Diagonalization (EXD)

Electron Density (ED)

Conditional Probability Distribution (CPD)

Anisotropic confinement

EXD wf $\sim |\uparrow\uparrow\downarrow\rangle - |\uparrow\downarrow\uparrow\rangle$

Entangled three-qubit W-states
WAVE-FUNCTION BASED APPROACHES

TWO-STEP METHOD

A HIERARCHY OF APPROXIMATIONS

<table>
<thead>
<tr>
<th>Total Energy</th>
<th>Correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restricted Hartree-Fock (RHF)</td>
<td>Non-linear equations</td>
</tr>
<tr>
<td>All spin and space symmetries are preserved</td>
<td></td>
</tr>
<tr>
<td>Double occupancy / e-densities: circularly symmetric</td>
<td>EMERGENT PHENOMENA</td>
</tr>
<tr>
<td>Single Slater determinant (central mean field)</td>
<td></td>
</tr>
<tr>
<td>Unrestricted Hartree-Fock (UHF)</td>
<td>Restoration of linearity of many-body equations</td>
</tr>
<tr>
<td>Total-spin and space symmetries (rotational or parity) are broken / Different orbitals for different spins</td>
<td></td>
</tr>
<tr>
<td>Solutions with lower symmetry (point-group symmetry)</td>
<td></td>
</tr>
<tr>
<td>Lower symmetry explicit in electron densities</td>
<td></td>
</tr>
<tr>
<td>Single Slater determinant (non-central mean field)</td>
<td></td>
</tr>
<tr>
<td>Implementation of UHF: Pople-Nesbet Eqs.</td>
<td></td>
</tr>
<tr>
<td>2D harmonic-oscillator basis set</td>
<td></td>
</tr>
<tr>
<td>Two coupled matrix Eqs. (for up and down spins)</td>
<td></td>
</tr>
<tr>
<td>Restoration of symmetry via projection techniques</td>
<td></td>
</tr>
<tr>
<td>Superposition of UHF Slater det.’s (beyond mean field)</td>
<td></td>
</tr>
<tr>
<td>e-densities: circularly symmetric</td>
<td></td>
</tr>
<tr>
<td>Good total spin and angular momenta</td>
<td></td>
</tr>
<tr>
<td>Lower symmetry is INTRINSIC (or HIDDEN)</td>
<td></td>
</tr>
<tr>
<td>Detection of broken symmetry: CPDs and rovibrational excitations of quantum dots</td>
<td></td>
</tr>
<tr>
<td>CPDs and dissociation of quantum dot molecules</td>
<td></td>
</tr>
</tbody>
</table>

EXACT DIAGONALIZATION

(Full Configuration Interaction)

When possible *(small N): High numerical accuracy*

Physics less transparent compared to “THE TWO-STEP”

Pair correlation functions, **CPDs**

Yannouleas and Landman, Rep. Prog. Phys. 70, 2067 (2007)
RESOLUTION OF SYMMETRY DILEMMA:
RESTORATION OF BROKEN SYMMETRY
BEYOND MEAN FIELD (Projection)!

• Per-Olov Löwdin
 (Chemistry - Spin)
• R.E. Peierls and J. Yoccoz
 (Nuclear Physics – \(L, \) rotations)

Ch. 11 in the book by P. Ring and P. Schuck
Note: Example in 2D

Excitation Spectrum of Two Correlated Electrons in a Lateral Quantum Dot with Negligible Zeeman Splitting

C. Ellenberger,1 T. Ihn,1 C. Yannouleas,2 U. Landman,2 K. Ensslin,1 D. Driscoll,3 and A. C. Gossard3
1 Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland
2 School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA
3 Materials Department, University of California, Santa Barbara, California 93106, USA
(Received 16 December 2005; published 30 March 2006)

basis of an avoided crossing with the first excited singlet state at finite fields. The measured spectra are in remarkable agreement with exact-diagonalization calculations. The results prove the significance of electron correlations and suggest the formation of a state with Wigner-molecular properties at low magnetic fields.

Observation and spectroscopy of a two-electron Wigner molecule in an ultraclean carbon nanotube

S. Pecker1†, F. Kuemmeth2†, A. Secchi3,4‡, M. Rontani3, D. C. Ralph5,6, P. L. McEuen5,6 and S. Ilani1*
SECOND PART

Some examples of high-energy particle-physics analogies

(graphene based nanosystems)

I. Romanovsky, C. Yannouleas, and U. Landman,
PRB 89, 035432 (2014)
PRB 87, 165431 (2013)
2D Graphene: honeycomb lattice

Graphene Nanosystems

Armchair or Zigzag edge terminations

Graphene quantum dots

Graphene nanoribbons

Open a gap Δ?

$M v_F^2 = \Delta$
Uniform Armchair Nanoribbons

$N=3m$ (Class I) Semiconductor

$N=3m+1$ (Class II) Semiconductor

$N=3m+2$ (Class III) Metallic

Δ, M

$\frac{k_x}{3a}$

TB (tight binding)
LETTERS

Atomically precise bottom-up fabrication of graphene nanoribbons

Jinming Cai¹, Pascal Ruffieux¹*, Rached Jaafar¹, Marco Bieri¹, Thomas Braun¹, Stephan Blankenburg¹, Matthias Muoth², Ari P. Seitsonen³,⁴, Moussa Saleh⁵, Xinliang Feng⁵, Klaus Müller⁵ & Roman Fasel¹,⁶
To determine the single-particle spectrum [the energy levels $\varepsilon_i(B)$] in the tight-binding calculations for the graphene nanorings, we use the Hamiltonian

$$H_{\text{TB}} = - \sum_{\langle i,j \rangle} \tilde{t}_{ij} c_i^\dagger c_j + h.c., \quad (1)$$

with $\langle \rangle$ indicating summation over the nearest-neighbor sites i, j. The hopping matrix element

$$\tilde{t}_{ij} = t_{ij} \exp \left(\frac{ie}{\hbar c} \int_{\mathbf{r}_i}^{\mathbf{r}_j} ds \cdot \mathbf{A}(\mathbf{r}) \right), \quad (2)$$

where \mathbf{r}_i and \mathbf{r}_j are the positions of the carbon atoms i and j, respectively, and \mathbf{A} is the vector potential associated with the applied constant magnetic field B applied perpendicular to the plane of the nanoring.
Two atoms in a unit cell/
Two sublattices A and B

Tight-Binding (TB)
Hexagonal Armchair Rings with semiconducting arms

Single-particle TB spectra

Magnetic field B

N=15 (Class I)

N=16 (Class II)

Aharonov-Bohm spectra

Magnetic flux (magnetic field B)
1D Generalized Dirac equation

\[[E - V(x)]I \Psi + i \hbar v_F \alpha \frac{\partial \Psi}{\partial x} - \beta \phi(x) \Psi = 0 \]

\[\Psi = \begin{pmatrix} \psi_u \\ \psi_i \end{pmatrix} \]

\(\alpha \) and \(\beta \): any two of the three 2x2 Pauli matrices

- electrostatic potential (Lorentz vector potential)
- scalar (Higgs) field / position-dependent mass \(m(x) \) (Lorentz scalar potential)

Question: Confinement of a relativistic fermion?

Problem with \(V(x) \): Klein tunneling

\(m(x) \) can confine relativistic particles
The 1D Generalized Dirac equation is given by:

\[
[E - V(x)]I \Psi + i\hbar v_F \alpha \frac{\partial \Psi}{\partial x} - \beta \phi(x) \Psi = 0
\]

where \(\alpha \) and \(\beta \) are any two of the three 2x2 Pauli matrices. The solution is expressed as:

\[
\Psi = \begin{pmatrix} \psi_u \\ \psi_l \end{pmatrix}
\]

The electrostatic potential \(\phi(x) \) and scalar (Higgs) field / position-dependent mass \(m(x) \) are considered.

The Dirac-Kronig-Penney Superlattice consists of a single side with 3 regions:

- Region 1: Mass \(m_1 \)
- Region 2: Mass \(m_2 \)
- Region 3: Mass \(m_3 \)

The transfer matrix is:

\[
\Omega_K(x) = \begin{pmatrix} e^{iKx} & e^{-iKx} \\ \Lambda e^{iKx} & -\Lambda e^{-iKx} \end{pmatrix}
\]

The wave number \(K \) is given by:

\[
K^2 = \frac{(E - V)^2 - m^2 v_F^4}{\hbar^2 v_F^2}
\]

And the phase factor \(\Lambda \) is:

\[
\Lambda = \frac{\hbar v_F K}{E - V + mv_F^2}
\]
Spectra/Armchair Rings with semi-conducting arms

Yellow:
Mass > 0

Red:
Mass < 0

Magnetic flux (magnetic field B)
kink soliton/ zero-energy fermionic soliton

\[\phi_k(x) = \zeta \tanh \left(\sqrt{\frac{\xi}{2}} \zeta x \right) \]

zero-energy fermionic soliton (Dirac eq.)

\[\Psi_S(x) \propto \left(\exp \left(- \int_0^x \phi_k(x')dx' \right) \right) \]

1D topological insulator

Topological invariants (Chern numbers):
- negative mass 1 (nontrivial)
- positive mass 0 (trivial)

Jackiw-Rebbi, PRD 13, 3398 (1976)
Densities for a state in the forbidden band

\[\frac{e}{6} \] fractional charge

(a)

(b)

Corner

DKP
Mixed Metallic-semiconductor
$N=17$ (Class III) / $N=15$ (Class I)

e/2 fractional charge
Conclusions

1) Instead of usual quantum-size confinement effects (case of clusters/analogies with nuclear physics), the spectra and wave functions of quasi-1D graphene nanostructures are sensitive to the topology of the lattice configuration (edges, shape, corners) of the system.

2) The topology is captured by general, position-dependent scalar fields (variable masses, including alternating +/- masses) in the relativistic Dirac equation.

3) The topology generates rich analogies with 1D quantum-field theories, e.g., localized fermionic solitons with fractional charges associated with the Jackiw-Rebbi model [PRD 13, 3398 (1976)].

4) Semiconducting hexagonal rings behave as 1D topological insulators with states well isolated from the environment (zero-energy states within the gap with charge accumulation at the corners).