A spatio-temporal point processes (STPP) is a random process whose realization consists of an ordered sequence of events localized in time and space, i.e.,

\[\mathcal{H}_t := \{ \mathbf{H}_t = (u, t) \mid \mathbf{H}_t \in \mathbb{R}^n \times S, u \in S \} \]

where \(t \in \mathbb{R}^+ \) is the time of the occurrence of event \(t \in \mathbb{R}^+ \), and \(u \in S \) is the location of the event.

Intensity Function

The STPP can be characterized by a conditional intensity function, denoted as

\[\lambda(t, u \mid H_t) \]

which means the current intensity depends on the history \(H_t \) up to time \(t \), where \(H_t \) is the \(\sigma \)-algebra.

- Denote \(N(A) \) the number of \((t, u) \) falling in a set \(A \subset \mathbb{R}^+ \times S \).

\[\lambda(t, u \mid H_t) dt du = \mathbb{E}[N(dt \times du) \mid H_t] \]

- Use temporal point process as an example, \(\lambda(t \mid H_t) = \frac{\text{count}(t)}{\text{area}(t)} \).

Classic Maximum-Likelihood-Based Methods

- Handcraft the intensity function \(\lambda(t, u \mid H_t) \) to capture the potentially complex triggering and clustering pattern of events.
- Estimate \(\theta \) by maximizing likelihood of a realization of \(\{ \mathbf{H}_1, \ldots, \mathbf{H}_n \} \)

\[\rho(\theta_1, \ldots, \theta_n) = \exp \left\{ -\int \int \lambda(t, u \mid H_t) dt du \right\} \prod_{i=1}^n \lambda(t_i, u_i \mid H_{t_i}) \]

- Challenges: (1) trade-off between model flexibility and model complexity; (2) limited prior knowledge and model misspecification.

New Imitation Learning Method

- **Main idea**: Learn a generative model \(\pi_\theta(a|s_t) \), where \(a \in \mathbb{R}^+ \times S \), to mimic the behaviors of observed STPP. In this way, \(\pi_\theta(a|s_t) \) will be able to capture the dynamic structures of the observed STPP.

- **Highlights**:
 1. Directly
 - match the counting measure: of the point processes generated by \(\pi_\theta(a|s_t) \) to the observed STPP.
 2. Avoid alternating minimax optimization in traditional imitation learning, and
 - is simply a minimization problem.
 3. Monitor the quality of learning via a proposed metric tailored for point processes defined in the reproducing kernel Hilbert Space (RKHS).

Generative Model

- Treat \(\pi_\theta(a|s_t) \), where \(a = (t, u) \in \mathbb{R}^+ \times S \), as the conditional density for event \(\mathbf{H}_t \):

\[\pi_\theta(a|s_t) = \pi(t, u | \mathbf{H}_t) \]

- Model: Long short term memory networks (LSTM), which is flexible to capture the nonlinear and long range sequential dependency structure.

- History information \(\{ \mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_t \} \) is recorded in the last hidden state \(\mathbf{h}_t \), where \(h \in \mathbb{R}^m \).

- Generating mechanism:

\[a_i \sim \pi(a_t \mid a_0 = \Theta(h_{t-1})), \quad u_i \sim \mathcal{N}(\mathbf{V}_a + W_{\mathbf{h}_t}, 1) \quad h_0 = 0, \]

where \(\mathbf{h}_t \) is a **nonlinear** mapping from \(\mathbb{R}^m \) to the parameter space of probability density \(\pi_\theta \).

- For example, let \(\pi_\theta \) be exponential distribution to produce \(t \) and bivariate Gaussian distribution to produce \(u \).

Learning

- **Traditional Imitation Learning**: Minimax Problem

\[r^* = \max_r \left(\mathbb{E}_{\pi} \left[\sum_{i=1}^{N_0} \epsilon_i(r) \right] - \max_{\pi \not= \pi_\theta} \mathbb{E}_{\pi} \left[\sum_{i=1}^{N_0} \epsilon_i(r) \right] \right) \tag{1} \]

- Time-consuming in that it requires to solve the inner maximization problem repeatedly when estimate \(r^* \).

Learning (to be continued)

- **Our Imitation Learning**: Minimization Problem

Main idea: Choose reward function \(r(a) \), where \(a \in \mathbb{R}^+ \times S \), as a unit ball in RKHS denoted as \(\mathcal{F} \), and this leads to a nonparametric closed-form estimation for \(r^* \).

- Details: For short notation, we denote \(\mathcal{N}(\cdot, \cdot) \) as the counting process associated with sample path \(\eta \), and \(k(a, a') \) is a universal RKHS kernel.

\[r_\pi := \mathbb{E}_{\pi} \left[\phi(\eta) \right] \]

where \(a := (t, u) \), \(dN(a) := dN(a) \) is the counting process associated with sample path \(\eta \), and \(k(a, a') \) is a universal RKHS kernel.

- From (1), \(r^* \) is obtained by

\[\max_{\pi \not= \pi_\theta} \mathbb{E}_{\pi} - \min_{\pi \not= \pi_\theta} \mathbb{E}_{\pi} - \min_{\pi \not= \pi_\theta} \mathbb{E}_{\pi} \]

where the first equality is guaranteed by the minimax theorem, and

\[r^* = \mathbb{E}_{\pi} - \min_{\pi \not= \pi_\theta} \mathbb{E}_{\pi} - \min_{\pi \not= \pi_\theta} \mathbb{E}_{\pi} \]

In this way, we change the original minimax problem to simply a minimization problem.

Algorithm

Algorithm 1 RLPP: Mini-batch Reinforcement Learning for Learning Point Processes

- **Initialize model parameters \(\theta \)**

 - for number of mini-batch \(\text{batch} \)

 - Sample minibatch of \(L \) trajectory of events \(\{ (t^1, u^1), \ldots, (t^L, u^L) \} \) from expert, where \(t^i = (t^i, \ldots, t^i) \).

 - Sample minibatch of \(M \) trajectory of events \(\{ (t^1, u^1), \ldots, (t^M, u^M) \} \) from policy \(\pi_{\pi_\theta} \), where \(\pi(t, u) \)

- **Update \(\pi_\theta \)** by policy gradient:

\[\theta = \theta + \frac{\Delta \theta}{|| \Delta \theta ||} \]

where \(\Delta \theta \) can be computed, and \(\frac{\Delta \theta}{|| \Delta \theta ||} \) can be estimated by 1 expert trajectories and \((M-1) \) roll-out samples without \(\gamma \).

\[r_\pi(\theta) = \mathbb{E}_{\pi} \left[\sum_{i=1}^{N_0} \epsilon_i(r) \right] \]

Numerical Results

(a): 911 dataset

(b): MIMIC dataset

Figure 2: KS test results: CDF of p-values.