Abstract

Developing countries pay substantially higher transportation costs than developed nations, which leads to less trade and perhaps lower incomes. This paper investigates price discrimination in the shipping industry and the role it plays in determining transportation costs. In the presence of market power, shipping prices depend on the demand characteristics of goods being traded. We show theoretically and estimate empirically that ocean cargo carriers charge higher prices when transporting goods with higher product prices, lower import demand elasticities, and higher tariffs, and when facing fewer competitors on a trade route. These characteristics explain more variation in shipping prices than do conventional proxies such as distance, and significantly contribute to the higher shipping prices facing the developing world. Our findings are also important for evaluating the impact of tariff liberalization. Cargo carriers decrease shipping prices by 1-2 percent for every 1 percent reduction in tariffs.

JEL Codes: O19, L9, R41, D23
Keywords: Transportation costs, price discrimination, liner conferences

Acknowledgements: The authors would like to thank, without implication Dan Kovenock, Steve Martin, Doug Irwin, Jan Hoffmann, Joseph Francois and an anonymous referee for comments. We are grateful to Jan Hoffmann for providing the Latin American transport data, to Anca Cristea for excellent research assistance, and to the NSF for providing support.
I. Introduction

Trade and development economists have become increasingly focused on trade barriers and the costs of remoteness. Geographically remote countries trade less, and this appears to reduce both the level and growth rate of income (Redding and Venables, 2004, Frankel and Romer, 1999). While we do not know precisely why remoteness matters, an obvious possibility is that isolated countries face significantly higher transportation costs. Table 1 shows that transport costs: one, are comparable in size to, or larger than tariffs; two, are considerably higher for lower income importers and exporters; and three, vary enormously across products. Given their size and variability, transportation costs are likely to play an especially important role in changing relative prices – lowering trade volumes in the aggregate and altering patterns of trade across goods and partners.

In this paper we investigate the hypothesis that the exercise of market power by cargo carriers (firms that provide shipping services) can help explain the level of shipping costs, their variability across goods and exporters, and critically, can provide insights into why costs are higher for developing countries. If correct, transportation costs should not be viewed as some trade limiting friction that is exogenously set and strictly proportional to value traded, as is commonly assumed when adopting the “iceberg” formulation. Rather, transportation costs are endogenous to the characteristics of goods being traded and the market structure of the industry providing shipping services. They are also a barrier to trade that, like tariffs, are amenable to reduction through concerted policy action.

There are two reasons to suspect the exercise of market power might be especially important in international shipping. First, minimum efficient scale in shipping is significant. The capacity of a modern container ship is large relative to the export volumes produced by smaller countries, and there are substantial economies of scope in offering transport services over a network of ports. One way to see this effect is to calculate the number of carriers operating on a particular trade route. In the fourth quarter 2006 one in six importer-exporter pairs world-wide was served by a single direct liner “service”, meaning that only one ship was operating on that route.\footnote{We focus on “direct” services only, that is, ships whose itineraries include both the importer i and the exporter j. We do not include indirect services in which one ship carries cargo from a port in exporter j to a port in transit country T, and then a second ship carries cargo from T to importer i.} Over half of importer-
exporter pairs were served by three or fewer ships, and in many cases all of the ships on a route were owned by a single carrier. Figure 1 plots the number of carriers operating between a given exporter and the US, graphed against the GDP of the exporter. Trade routes involving larger countries have higher trade volumes, more ships and more carriers operating on them.

Second, even on trade routes with multiple carriers operating, the ferocity of competition is in question. Carriers on densely traded routes are organized into cartels known as liner conferences that discuss shipping prices and market shares. The role of market power in shipping has been a long standing concern in policy circles (see Fink et al 2000 for a review). More recently, the European Union Competitiveness Council concluded that cartelization had led to a less competitive shipping market and higher shipping prices, and repealed a block exemption to its competition laws for liner conferences. Beginning in 2008 carriers serving the EU will no longer be able to meet in conferences or to collude in setting prices and market share.

But are these concerns valid? The existence of liner conferences does not prove that they collude successfully nor indicate how much lower shipping prices would be in their absence. A theoretical literature on contestability argues that a small number of carriers serving a particular route is not prima facie evidence of market power, so long as entrants stand ready to compete away monopoly profits (Davies, 1986). For example, tramp shipping services and air carriers may act as a kind of competitive fringe disciplining the pricing behavior of liner companies.

The direct evidence linking shipping prices to market power is mixed. Clyde and Reitzes (1995) find no statistically significant relationship between shipping prices and the market share of conferences serving on a route. Fink et al (2000) find that shipping prices are higher in the presence of price-fixing agreements by conferences. Both papers rely on US imports data and, given the large volumes of cargo and many competitors operating on US trade routes, the results may not be representative of the shipping industry worldwide. In addition, the test of market power in both papers relies on variation in liner conference activity across trade routes, and this poses significant identification problems. That is, liner conferences may drive up shipping prices through collusive

3 Commissioner Charlie McCreevy, who handled the proposal, said “The European shipping industry will benefit from the more competitive market that will result from the repeal of the block exemption and the EU economy as a whole stands to benefit from lower transport prices and more competitive exports.” EU Press Release IP/05/1249.
4 Tramp shipping represented 17 percent of US waterborne import cargoes by value (and 5 percent of containerized value) in 2002. Airborne cargoes represent a vanishingly small percentage of freight by weight, but over a third of US imports from sources outside the US. Source: author’s calculations from US Waterborne Imports database, 2002, and US Imports of Merchandise data.
behavior, or liner conferences may be especially active on routes where shipping prices are likely to be high for other reasons.

We provide a test of market power in the shipping industry that links shipping price variation to characteristics of products. This test enables us to identify how much variation in shipping prices across goods and across markets is due to market power. In addition, we are able to show how market power leads to systematically higher shipping prices in the developing world and to calculate their impact on trade flows.

We model the shipping industry as a Cournot oligopoly with a fixed number of carriers, and determine optimal shipping markups as a function of the number of carriers and the elasticity of transportation demand faced by carriers. A key insight of the model is that transportation is not consumed directly; instead carriers face transportation demand derived indirectly from import demand. This implies that the impact of an increased shipping markup on the demand for transportation depends on the share of transportation costs in the delivered price of the good, and elasticity of import demand. These implications are quite similar to the model in Francois and Wooten (2001) so our primary contribution lies in the empirical tests. Since both the elasticity of import demand and the share of transportation in the delivered price vary considerably across goods, and we can use this variation to identify whether carriers exercise market power.

To make plain the intuition behind the model, suppose the marginal cost of shipping either of two goods equals $10, and carriers are considering adding a $5 markup. The first good has a factory price of $10, so the markup will increase the delivered price by 25%. The second good has a factory price of $90, so the markup increases the delivered price by 5%. The same shipping markup has a much larger effect on the delivered price of the $10 good because shipping costs represent a larger share of the delivered price. Holding fixed marginal costs of transportation, the optimal markup charged by a carrier is then increasing in product prices.

Several previous papers have used this intuition as a simple test of market power in shipping. If the marginal cost of transport is independent of the price of the good shipped, and markets are competitive, then the prices charged by carriers should also be independent of goods prices. Since shipping prices are positively correlated with goods prices in the data, previous authors have concluded that market power is being exercised. The problem with this logic is that marginal costs of transportation are likely not independent of goods prices. There is a wide range of

5 Sjostrom (1992) reviews and critiques this literature.
transport service quality available to exporters. Faster ships, direct routing, and more careful handling are all available at a premium, and are more likely to be demanded for the transport of higher quality goods.\(^6\) Shipping prices also include insurance charges that are increasing in the value of the goods shipped.\(^7\) That is, one would expect to see a positive correlation between goods prices and shipping prices even if shipping markets were highly competitive.

Happily our model delivers two more testable implications that do not suffer this identification problem. First, when considering the impact of shipping prices on the delivered price of goods, it is necessary to examine product prices inclusive of tariffs. Raising the tariff on a good raises its price inclusive of the tariff, lowers the percentage impact of a given transportation charge on the delivered price, and therefore increases the optimal shipping markup. The impact on the markup operates through precisely the same channel as an increase in prices due to product quality, except that increasing tariffs does not affect the demand for higher quality transportation. If we find a positive relationship between tariffs and shipping prices we can attribute this to market power, and not to variation in the marginal cost of shipping. This channel also suggests a particularly deleterious role for tariffs in limiting trade. Tariffs raise foreign goods prices directly by taxing them, and indirectly by inducing higher shipping prices, and both reduce trade flows.

Our second testable implication relates to the responsiveness of trade to increased prices. Returning to our example above, now suppose we have two traded goods with a factory gate price of $90 and marginal costs of shipping equal to $10, so that a markup of $5 will yield an equal 5% increase in the delivered price of each good. The first good is a differentiated product and faces an import demand elasticity equal to 1.1. Here, a markup that yields a 5% increase in delivered price reduces traded quantities, and therefore demand for transportation services, by only 5.5%. The second good is a highly substitutable commodity and faces an import demand elasticity of 10. Here, the markup raises prices by 5% but lowers quantities traded and demand for transportation services by 50%! In the latter case the identical markup reduces import (and therefore transportation) demand to a much greater degree, limiting the carrier’s optimal markup.

Our model uses these simple insights to show how, conditional on the number of carriers, optimal markups will be increasing in product price and tariffs, and decreasing in the absolute value

\(^6\) Hummels and Schaur (2007) provide evidence for this claim in an instance, the use of air versus ocean transportation, where service quality differences can be directly observed.

\(^7\) In a small sub-sample of our goods we can extract this insurance component. The insurance premium is highly correlated with product price (the elasticity of insurance costs with respect to product price within narrowly defined product categories is .88), but insurance only represents about 3 percent of the total freight bill for the typical good.
of the import demand elasticity. However, the impact of these factors is each lessened as the number of carriers rises. This provides us with the alternative hypothesis: if shipping markets are sufficiently competitive then carriers are unable to exploit their market power to raise prices even in cases where the derived demand for transportation services is relatively inelastic.

Our empirical work uses data on shipping prices derived from detailed imports data for the US and Latin America. We relate shipping prices to variation across exporters and products in: cost shifters, product prices, tariffs, the elasticity of import demand, and the number of carriers. Our data confirm the theoretical predictions. Price discriminating carriers charge higher markups on goods with high prices, high tariffs, and a low (absolute) import demand elasticity. Particularly relevant from a policy perspective, a 1 percent increase in tariffs leads to an increase in transportation prices of 1-2 percent. Having more carriers on a route directly lowers transportation prices, and reduces the effect of the import demand elasticity on prices. This confirms that price discrimination is substantially weakened in the presence of more competition.

We show that the exercise of market power is responsible for a large portion of the observed variation in shipping prices across goods and exporters by comparing differences in prices at “high” (95th percentile) and “low” (5th percentile) values of the explanatory variables. In the US sample, goods with a low import demand elasticity of 3.2 face shipping prices that are, ceteris paribus, 47 percent higher than goods with a high import demand elasticity of 16.5. In the Latin American sample, goods subject to a high 23 percent ad-valorem tariff face shipping prices that are 32 percent higher than those goods subject to no tariff. Exporters served by only two ocean carriers face shipping prices that are 21 percent larger than exporters in which there are 8 carriers competing.

Market power helps explain higher ad-valorem shipping prices faced by developing countries. On average, non-OECD exporters pay 41 percent more than OECD exporters when shipping into the US, and 40 percent more when shipping into Latin America. More than half of this effect is explained by differences in product prices with a relatively minor role played by simple measures of market access like distance. Shipping prices on Latin American imports are, on average, 30 percent higher than shipping prices on US imports. One-third of this difference is explained by the small number of carriers serving Latin American importers. Another half of the difference is due to much higher tariffs on Latin American imports that allow ocean carriers room to charge higher markups.
Finally, we provide a back of the envelope calculation of what shipping prices and trade volumes would be if markups on all traded goods were equal to the smallest markups observed in the data. For the US, aggregate freight expenditures as a percentage of import value would drop from 4.3 to 3.1 percent, and trade volumes would increase by 5.9 percent. For Latin America, aggregate freight expenditures as a percentage of import value would drop from 5.2 to 2.7 percent, resulting in 15.2 percent more trade.

II. The Model

In this section we develop a simple model of trade in which ocean cargo carriers have market power and set an optimal shipping price as a function of market and product characteristics. We assume a fixed number of carriers which compete in quantities (à la Cournot), and relate optimal markups to the number of carriers, the price elasticity of import demand, and the cost share of transportation services in the delivered (inclusive of tariffs) price of the traded good.\(^8\) The alternative hypothesis is that as the number of carriers grows large, the price of shipping equals its marginal cost, which is unaffected by the price elasticity of import demand and tariffs.

This approach abstracts from a potentially important real world complication. The international shipping industry has numerous components including inland freight services, ports, and ocean shipping lines. In some markets port services are highly competitive while in others monopoly power reigns. A trade route may exhibit very little market power in the pricing of the shipping lines or freight forwarders, yet substantial market power can be found at the port level. Without knowing the details of market microstructure for every market and every product it is exceptionally difficult to sort out precisely where market power, if any, is exerted. Accordingly, we examine shipping as an integrated value chain, examine shipping prices paid over the entire chain and relate these to product characteristics. While this loses some of the institutional richness of the transportation industry it allows us to focus on an object – total transportation charges – that is of most interest from the perspective of a carrier deciding to engage in international trade.

Assumptions

The world consists of \(i=1,2,\ldots, M\) symmetric countries each of which consists of one representative consumer. Consumers have quasi-linear preferences defined over a homogenous

\(^8\) Note that in static models of industries with market power, the optimal markup depends on the price elasticity of the residual demand regardless of the market structure (Perloff et al. 2007, p. 6.).
numeraire good and varieties of a good that consumers regard as Armington differentiated by national origin, with a price elasticity of demand σ. A representative consumer in country i has a utility function

$$U_i = q_{io} + \sum_{j=1}^{M} q_j^{(\sigma-1)/\sigma}$$

where q_{io} is country i's consumption of the numeraire; q_j is country i's consumption of a variety purchased from source country j.

The price of the numeraire is normalized to one and it can be traded at no cost. Goods from country j are sold at price p_j which carriers take as given.\(^9\) The delivered price of traded varieties includes a per-unit transportation price, f_j, and the ad-valorem tariff rate, $\tau_{ij} \geq 1$:

$$p_j = p_j \tau_{ij} + f_j$$

Note that this formulation nests the standard iceberg formulation of transportation costs provided that the per unit transportation price is unit elastic with respect to product prices. That is, if $f_j = (p_j)^\beta X_j$, then the transportation price is a function of product price and other cost shifters, X, such as distance, oil prices, quality of infrastructure and so on. The iceberg assumption as commonly employed implies that X is exogenous to the trade flow and $\beta = 1$ so that the delivered price is $p_j = p_j (\tau_{ij} + X_j)$. Hummels and Skiba (2004) provide evidence that $\beta \neq 1$. We address the role of market power in determining both the value of β and the characteristics that belong in X.

Transportation prices are set by carriers and are taken as given by consumers. The exclusive rights on shipping from country i to j belong to n_{ij} symmetric carriers. Each carrier’s technology is defined by the fixed cost C_{ij} and marginal cost c_{ij}.

\(^9\) This is equivalent to assuming that the Armington good is produced by a perfectly competitive, constant returns to scale sector requiring p_j units of labor to produce one unit of the good. Alternatively, it is as if the carrier is buying an intermediate input at price p_j from country-producer, adds shipping services, and sells it as a final product to a country consumer.
prices. Relative to the numeraire, consumption of a variety from exporter j satisfies:

$$\frac{\sigma}{\sigma - 1} q_{ij}^\frac{1}{\sigma} = \frac{p_{ij}}{\sigma},$$

which gives us the demand for j‘s variety.\(^\text{10}\)

$$q_{ij} = \left[\frac{\sigma}{\sigma - 1} \left(p_j \tau_{ij} + f_{ij} \right) \right]^\sigma.$$

Using this we can calculate the price elasticity of demand for shipping services in the industry as a whole. It is just the elasticity of import demand with respect to the shipping price f_{ij},

$$\frac{\partial q_{ij}}{\partial f_{ij}} q_{ij} = -\sigma s_{ij}.$$

The key point is that transportation services are not valued for their own sake, and are only consumed indirectly as a function of import demand. The price elasticity of demand for shipping services equals the elasticity of import demand with respect to a change in import prices, σ, multiplied by the share of the shipping charge in the delivered price $s_{ij} = \frac{f_{ij}}{p_j \tau_{ij} + f_{ij}}$.

A 1% increase in the shipping price f_{ij} raises the delivered price of the good by s_{ij} percent. An s_{ij} percent change in delivered prices then yields a $-\sigma s_{ij}$ reduction in import (and therefore transport) demand. When s_{ij} is small, cargo carriers can raise shipping prices at the margin without having a large effect on demand for their services. This is true even if σ is very high and trade itself is highly sensitive to changes in delivered prices. For example, take an import demand elasticity near the upper bound of our estimated elasticities from the next section, $\sigma = 25$, meaning that a 1% increase in import prices reduces import quantities by 25%. If $s_{ij} = .10$, a 1% increase in the shipping price lowers shipping demand by only 2.5%. In other words, even goods that face highly elastic import demands might still face significant markups by the carriers.

\(^\text{10}\) This differs from a standard CES demand because we are calculating demands for each good relative to the numeraire rather than relative to a basket of other varieties. In the case without a numeraire, this expression would include a CES price index that is specific to an importer. Our empirical estimates control for importer specific effects, which can be read as the price of the numeraire for our function, or as the level of the CES price index for the more standard case without a numeraire.
We can now calculate the optimal shipping prices for our \(n \) oligopolists. The profit functions of carrier \(l \) delivering from country \(j \) to country \(i \) is:

\[
\pi^l_{ij} = Q^l_{ij} \left(f_{ij} - c_{ij} \right) - C_{ij}
\]

\(\forall l = 1, 2, \ldots, n_{ij} \),

where \(Q^l_{ij} \) denotes the quantity of a differentiated variety transported by carriers \(l \) from \(j \) to \(i \), and \(n_{ij} \) is the number of carriers on the route from \(j \) to \(i \). The \(n_{ij} \times 1 \) vector of the first order condition can be represented as

\[
\frac{\partial \pi^l_{ij}}{\partial Q^l_{ij}} = f_{ij} + Q^l_{ij} \frac{\partial f_{ij}}{\partial Q^l_{ij}} - c_{ij} = 0
\]

\(\forall l = 1, 2, \ldots, n_{ij} \).

The total amount shipped from \(i \) to \(j \) equals the aggregate demand of country \(i \) for variety produced by \(j \):

\[
Q^1_{ij} + Q^2_{ij} + \ldots + Q^{n_{ij}}_{ij} = q_{ij}.
\]

From (3) - (6) we obtain the optimal quantity per carrier and the profit-maximizing shipping price:

\[
Q^l_{ij} = \frac{1}{n_{ij}} \left[\frac{\sigma}{\sigma - 1} \left(\frac{c_{ij} + p_j \tau_{ij}}{1 - 1/(\sigma n_{ij})} \right) \right]^{-\sigma}.
\]

\[
f_{ij} = c_{ij} + \frac{c_{ij} + p_j \tau_{ij}}{n_{ij} \sigma - 1}.
\]

The second summand is a marginal profit of shipping, which is independent of the fixed cost of shipping. To obtain the cargo carriers markup we divide the freight rate by the marginal cost, \(\mu = f / c \), or

\[
\mu_{ij} = \frac{\sigma s_{ij} n_{ij}}{\sigma s_{ij} n_{ij} - 1}.
\]

The term \(\sigma s_{ij} n_{ij} \) measures the elasticity of demand facing each of the \(n \) carriers. For the case of a monopolist, it is precisely equal to the elasticity facing the shipping industry as a whole, \(\sigma s_{ij} \).

Rewriting the markup as a function of exogenous variables we have

\[
\mu_{ij} = 1 + \frac{1 + p_j \tau_{ij} / c_{ij}}{n_{ij} \sigma - 1}.
\]

The markup depends on route-specific and product-specific determinants. Markups are decreasing in the number of carriers on a route \(n_{ij} \), the final product’s price elasticity of demand \(\sigma \), and the
marginal costs of shipping relative to product prices inclusive of tariffs, $c_{ij}/p_j\tau_{ij}$. We discuss the intuition for each in turn.

There are large differences across trade routes in the number of carriers competing for cargo – see Figure 1. When comparing shipping prices across routes, equation (10) indicates that the number of carriers has a potentially large effect on the markup rule and shipping prices. Consider a good with median elastic import demand ($\sigma = 5$) and suppose that the marginal costs of shipping relative to product prices inclusive of tariffs, $c_{ij}/p_j\tau_{ij} = .05$. With a monopoly carrier, the optimal markup would be $\mu_{ij} = 1 + \frac{1 + 0.05}{5 - 1} = 6.25$ times the marginal costs of shipping, resulting in a 31% ad-valorem trade barrier. Having just one more carrier cuts the markup almost in half to $\mu_{ij} = 1 + \frac{1 + 0.05}{10 - 1} = 3.33$, resulting in a 16.7% ad-valorem trade barrier.

Even fixing n along a particular route, markups will vary considerably since $c_{ij}/p_j\tau_{ij}$ and σ might vary across goods. Carriers markups depend on how elastic is import demand with respect to a change in shipping prices. As $c_{ij}/p_j\tau_{ij}$ rises, a given shipping markup has a larger effect on delivered goods prices and reduces import and transport demand to a greater degree. Similarly, high values of σ mean that a given increase in delivered goods prices reduces import and transport demand more rapidly, limiting the optimal markups that can be charged.

This simple model provides a ready explanation for the facts laid out in Table 1. For US imports, the coefficient of variation (across exporters and goods) in ad-valorem transportation prices is 1.4, meaning that shipments with prices that are one-standard deviation above the mean are 140 percent greater than the mean. This model can generate substantial variation across shipping prices as a function of product prices and the elasticity of import demand. Even if we hold constant the product in question there is tremendous variation in shipping prices across exporters to a given market. For US imports, the exporter one standard deviation above the mean pays shipping prices 89 percent higher than the mean. In the model, shipping prices can vary across exporters as a function of underlying marginal cost variation and because the intensity of competition on a trade route affects markups.

To formalize our test of market power in the shipping industry we need to assume a particular functional form for the marginal cost of transportation so we can relate the markup rule to
observable characteristics. Let the marginal cost of shipping depend on the distance between countries i and j, and on the price of the shipped good, according to

$$c_{ij} = \exp(\beta_0) (p_j)^{\beta_1} (\text{dist}_{ij})^{\beta_2}. \quad (11)$$

The effect of distance on costs is obvious, but prices are a bit more subtle. While we have ignored the quality of shipping services to this point, when confronting the data it is important to realize that there is a wide range of transport service quality available to exporters. Faster ships, direct routing, and more careful handling are all available at a premium, and are more likely to be demanded for the transport of higher quality goods. In addition, our data on shipping costs include insurance charges which surely depend on the value of the good being transported. Plugging this into the markup equation we have

$$\mu_{ij} = \left(\frac{1 + (p_j)^{1-\beta_1} \exp(\beta_0) (\text{dist}_{ij})^{\beta_2}}{n_{ij} \sigma - 1} \right). \quad (12)$$

Equations (11) and (12) make clear the difficulty with an approach used in the literature to test for shipping market power. Several papers simply regress shipping prices on goods prices and conclude that a positive coefficient indicates the presence of market power. If $\beta_1 = 1$, marginal shipping costs depend on goods prices but the markup does not. If $\beta_1 = 0$, the markup depends on goods prices, but marginal costs do not. For values between 0 and 1, both marginal costs and the markup are affected by goods prices.

Unlike goods prices, tariffs τ_{ij} and the elasticity of import demand σ appear only in the markup equation. These variables should only affect shipping prices if carriers are able to exercise market power. Moreover, the elasticity of shipping prices with respect to τ_{ij} and σ depends on the number of carriers, and approaches zero as n grows large. On the limit the markup converges to one and shipping prices equal marginal costs. This provides an alternative hypothesis for our empirical tests: if n_{ij} is sufficiently large that the industry behaves competitively, then shipping prices will be independent of τ_{ij} and σ. This competitive industry result is the same implication one would get under two additional alternatives: that cargo carriers compete in prices a la Bertrand, or that the market for cargo services is contestable due to a competitive fringe of tramp shipping.

We can now summarize the relationship between the components of shipping prices (marginal cost and markups) and observable characteristics, holding the number of carriers fixed.
These comparative statics can be thought of as a short run response of shipping prices to changes in exogenous variables before entry / exit of carriers occurs in the long run. Alternatively, one can think of the comparative statics as describing variation in shipping prices across different kinds of goods along the same shipping route. That is, the number of carriers shipping goods between Brazil and the United States is fixed at a point in time, but there is still variation across goods on the Brazil-US route in goods prices, tariffs, and the elasticity of substitution.

The signs of the model’s comparative statics are reported in the first two columns of Table 2, with the contrasting case of marginal cost pricing reported in the final two columns. Marginal costs are increasing functions of goods prices and distance as given by equation (11). The markup is increasing in the factory price and tariff, and decreasing in distance\(^{11}\), number of carriers, and price elasticity of demand.

While we have assumed a Cournot oligopoly, the last set of results is quite general. Following Perloff et al (2007, p.3), it is easy to show that the optimal markup is a function of the marginal revenue regardless of the market structure. By definition, firms with market power face a downward sloping residual demand, and the marginal revenue is a function of the residual demand. The standard markup rule over the marginal cost is \(c_i \varepsilon / (\varepsilon - 1)\), where the freight rate elasticity of demand \(\varepsilon\) relates to the demand elasticity as \(\varepsilon = \sigma \frac{f}{p \tau + f}\). Thus the qualitative predictions of (10) are invariant on the market structure.

In the empirical work we examine the elasticity of shipping prices with respect to the changes in the observed variables, and given the functional form of (10) there are important interactions between the variables. In particular, the elasticity of the shipping price with respect to \(\sigma_k\) is decreasing in \(n_{ij}\) and decreasing in \(c_{ij} / p_j \tau_{ij}\).

III. Empirics

In this section we relate shipping prices to product characteristics to test for the existence of market power in shipping. The precise functional form implied by our model is difficult to capture empirically as it involves nonlinear interactions between the levels of variables we are unable to measure exactly. In particular, we know some correlates of marginal costs (product price, distance),

\(^{11}\) Distance is an interesting variable since it directly raises marginal costs but indirectly lowers the markup. As distance increases the share of shipping charge in the delivered price goes up, shippers pricing behavior has a stronger effect on total demand and this limits their market power. The magnitude of the direct effect outweighs the indirect effect.
but not the intercept or other factors like product bulkiness or special handling requirements. Accordingly, we use a simple log linear expression and interactions meant to capture the sign of the comparative statics summarized in Table 2. We use two data samples, and exploit somewhat different sources of variation in the two cases.

The first data sample comes from the US Census Imports of Merchandise, years 1991-2004. We employ data on US imports in each year \(t\), disaggregated by exporter \(j\), product \(k\) (HS 6 digit data which includes roughly 5,000 product categories) and transport mode \(m\) (air, ocean). We observe value, weight, duties paid, and shipment charges for each \(j-k-m-t\) observation. We only employ ocean shipping data, and hereafter drop the mode \(m\) subscript.

We run several specifications. The first is

\[
\ln f_{jkt} = \alpha_j + \beta_1 \ln p_{jkt} + \beta_2 \ln \tau_{jkt} + \beta_3 \sigma_k + \beta_4 \text{TIME}_k + \epsilon_{jkt}
\]

where \(f_{jkt}\) is the freight price per kg shipped, \(p_{jkt}\) is the value/kg price of the good, \(\tau_{jkt}\) is the ad-valorem tariff, \(\sigma_k\) is the elasticity of import demand, \(\text{TIME}_k\) is a measure of the time sensitivity of goods at the HS 4 level taken from Hummels and Schaur (2007), and \(\alpha_j\) is a vector of exporter-time fixed effects. Including the fixed effects is equivalent to holding fixed the number of carriers between the US and exporter \(j\) and exploiting only variation across product characteristics. It also holds fixed many difficult to capture features of the shipping industry that are exporter specific, including cargo reservation policies (Fink et al 2000), the strength of liner conference activity (Fink et al 2000, Clyde and Reitzes 1995), and port efficiency (Wilmsmeier et al 2006, Blonigen and Wilson, 2006, Clark et al 2004). The variable \(\text{TIME}_k\) does not appear explicitly in our modeling but is included in order to capture the importance of air shipping as a competitive alternative to ocean shipping. There are large differences across goods in the desirability of using air cargo, and the market power of ocean carriers will be weakest in cases where exporting carriers are most willing to switch toward air shipping. This will occur precisely in those goods for which import demands are most time sensitive.\(^{12}\)

\(^{12}\)Hummels and Schaur (2007) estimate time sensitivity for each good by examining the premium firms are willing to pay to air ship a good as a function of the days of ocean traveled saved by using air cargo. The resulting estimates reveal a median willingness to pay of just under 1 percent ad-valorem per day that ocean travel delays trade. However, there are substantial differences across goods in time sensitivity ranging from 0 at the low end up to 5 percent ad-valorem per day at the high end.
In the second specification, we omit exporter fixed effects and include data on the number of carriers operating on a route, both in levels and interacted with the price elasticity of demand.

\[
\ln f_{jkt} = \alpha + \beta_1 \ln p_{jkt} + \beta_2 \ln \tau_{jkt} + \beta_3 \ln \sigma_k + \beta_4 \text{TIME}_k \\
+ \beta_5 \ln \text{DIST}_j + \beta_6 \ln n_j + \beta_7 \ln n_j \ln \sigma_k + \epsilon_{jkt}
\]

All variables except the number of carriers and the elasticity of import demand are taken directly from the US import data. The number of carriers is calculated using the Port2Port Evaluation Tool from www.compairdata.com. This database reports shipping schedules for each vessel carrying cargo between each port-port pair worldwide, including the liner carrier or consortium operating each vessel. From this we calculate the number of distinct carriers operating on each route. The data were collected for the 4th quarter of 2006, and cover shipping schedules in that period. We do not have time series data for the number of carriers and so treat it as constant for a given exporter to the US over the sample period. For reference, Figure 1 displays a scatterplot of (log) number of carriers against (log) exporter GDP.

Not all exporting countries have direct connections to US seaports and so do not appear in the schedule data. In these cases we impute the number of carriers using information on indirect routings. For example, there is a service between Singapore and the US but no direct shipments between Kenya or Tanzania and the US. These exporters must first ship goods to ports in Singapore where they are aggregated into larger ships and sent along to the US. For exporters with no direct service to the US we use the number of carriers between the origin ports and the hub ports from which they are subsequently shipped to the US. In our sample there are 52 exporters for which we have direct observations on numbers of carriers, to which we add 36 more exporters in which we can reasonably impute values. We drop the remaining exporters from our set of US data. Our tables report results that include the imputed data, but we have experimented and our results are very similar when we use only those exporters with direct service to the US.

The elasticity of import demand is a critical variable for our study, so we experiment with values taken from two sources. First, we use estimates of σ_k at the 3 digit level of Standard International Trade Classification revision 3 (SITC) taken from Broda-Weinstein (2006). Their σ_k elasticities are estimated using a procedure developed by Feenstra (1994) that exploits time series variation in the quantity shares of exporter j selling product k to the US market as a function of time.
series variation in the price of $j-k$. When using the BW elasticities we still employ shipping data at the HS 6 level so as to avoid aggregating away interesting variation in the f_{jkt}, p_{jkt}, and τ_{jkt} data. In this case each SITC 3 digit estimate of σ_k is used in multiple HS 6 products.

Second, we directly estimate σ_k for each HS 6 product, using trade costs to trace out price variation across source countries j quantity shares. The details on our estimation method are contained in the appendix, along with a discussion of the advantages and disadvantages of our approach relative to Broda-Weinstein, and some summary statistics on the estimated values. Briefly, our estimates are more disaggregated, and estimated specifically for the transportation mode, country sample, and time period employed in the shipping price regressions. If σ_k varies by level of aggregation, mode, countries or time, the elasticities we estimate may be preferable. Our approach might be problematic if each exporter has an upward sloping export supply curve that is specific to each importer. In this case a rise in trade costs from importer i will be partially offset by a reduction in factory gate prices, but only for those goods destined for importer i. If export supply prices do respond differentially to bilateral variation in trade costs and there is substantial variation in the extent of response across products, this will complicate the interpretation of results. In this case the Broda-Weinstein approach may be preferable. Since we are agnostic about which concern (matching samples precisely versus controlling for export supply price variation) is most problematic we provide both results.

Our second data sample comes from the BTI trade database for 2000. In this case we have multiple Latin American importers (Argentina, Brazil, Chile, Ecuador, Peru, Uruguay) and therefore many importer-exporter pairs, but lack time series variation. The specifications are similar to equations (13) and (14), except that all time “t” subscripts are replaced with importer “i” subscripts. The corresponding equations are

\[
\ln f_{ijk} = \alpha_j + \beta_{1i} \ln p_{ijk} + \beta_{2i} \ln \tau_{ijk} + \beta_{3i} \ln \sigma_k + \beta_{4i} \ln \text{TIME}_k + e_{ijk}
\]

\[
\ln f_{ijk} = \alpha_i + \beta_{1i} \ln p_{ijk} + \beta_{2i} \ln \tau_{ijk} + \beta_{3i} \ln \sigma_k + \beta_{4i} \ln \text{TIME}_k + \beta_{5i} \ln \text{DIST}_{ij} + \beta_{6i} \ln n_{ij} + \beta_{7i} \ln n_{ij} \ln \sigma_k + e_{ijk}
\]

\[\text{13 We are grateful to Jan Hoffmann at UN ECLAC for providing these data.}\]
In the first specification we control for the number of carriers using a vector of exporter fixed effects α_j. In the second we omit the fixed effects but include data on the number of carriers and an interaction with σ_k.

All variables except n_{ij} and σ_k come from the BTI data. As with the US data, n_{ij} comes from the Port2Port evaluation tool at www.compairdata.com. Compared to the US case there are far fewer exporters for which we either have schedule data directly or can infer reasonable substitute exporters to impute values, and this substantially reduces our sample. We have compared estimated elasticities in the fixed effect regressions that omit n_{ij} for the larger and the reduced samples, and coefficients are all very similar except distance, where truncating the sample significantly reduces the estimated coefficient. Since the main variables of interest are robust to the two sample types and we wish to maintain comparability of samples across columns we employ the smaller samples for all Latin American regressions.

Because the elasticity of import demand σ_k may be different in the Latin American and US import markets, we estimate values of σ_k that are specific to this dataset (details in the appendix). We also use our estimates of σ_k from the US data, and Broda-Weinstein estimates of σ_k from the US data, and results are qualitatively similar in each case.

Results

Table 3 reports estimates of equations (13) and (14) using US imports data. The first four columns use our elasticities estimated at the HS6 level. All signs match our theory. Shipping prices are increasing in distance, and in product prices. As we note above, the positive correlation between shipping prices and product prices has been shown elsewhere in the literature and could reflect market power if marginal costs of shipping are independent of goods prices. A much stronger test of market power is found in the other variables. Shipping prices are higher for goods with lower import demand elasticities (elasticity -0.2 to -.22). That is, carriers are best able to take advantage of their position between producer and consumer to increase markups when consumption decisions are less sensitive to changes in delivered prices. Shipping prices are increasing in tariffs with an elasticity of 1.2, meaning that a 1 percent tariff increase calls forth an additional 1.2 percent increase in shipping prices. The results on product prices, import demand elasticities and tariffs go through whether we use exporter-time fixed effects (and omit distance and number of carriers) or
omit the fixed effects and enter distance and number of carriers directly. The coefficient on
number of carriers operating on a route is negative and the interaction between number of carriers
and demand elasticity is positive. This means that that adding more carriers to a route directly
lowers shipping prices and weakens the ability of carriers to charge higher markups on goods facing
a less elastic import demand. Finally, the coefficient on the TIME variable is negative and
significant in all specifications, indicating that shipping prices are lower for those goods that are
time sensitive and therefore more likely to employ air cargo as a substitute for ocean carriers. None
of the other coefficients are impacted by including or excluding a product’s time sensitivity.

The last four columns of Table 3 employ SITC 3 digit demand elasticities from Broda-
Weinstein (2006). The coefficients on the demand elasticity are roughly half the size as those
estimated with our HS 6 values for \(\sigma_k \), but still negative and highly significant, and all other
variables have a similar affect on shipping prices. A likely explanation for the difference in the \(\sigma_k \)
coefficients is that the Broda-Weinstein elasticities are estimated on more aggregated data and using
samples which do not exactly match the data in question. In this case their estimates are noisy
indicators of the true elasticity of import demand facing carriers, and so the coefficients are subject
to attenuation bias toward zero.

Table 4 reports estimates of equations (15) and (16) using Latin American data. As with the
US data shipping prices are increasing in distance, product prices, and tariffs, and decreasing in the
import demand elasticity, the number of carriers, and the time sensitivity of products (which
measures the desirability of air cargo as an alternative). The coefficients on the import demand
elasticity are comparable in magnitude to those estimated on the US data in Table 3, while the
coefficients on tariffs and the number of carriers are larger (in absolute magnitudes). When using
the BW elasticities the interaction between the import demand elasticity and number of carriers is
positive, meaning that adding more carriers to a route weakens the ability of carriers to charge
higher markups on goods facing a less elastic import demand. The interaction term is insignificant
in the regressions using HS 6 \(\sigma_k \) data, but the net effect of both the number of carriers and the
import demand elasticity is negative when evaluated at both variables means.

The differences between the US and Latin American samples in the tariff and number of
carriers effects are particularly interesting. In the US, where tariffs are relatively small, a 1 percent
increase in tariffs leads to a 1.1 to 1.2 percent increase in shipping prices. In Latin America, where
tariffs are larger and exhibit much greater variation across products, a 1 percent increase in tariffs
yields a 1.2 to 2.1 percent increase in shipping prices. This suggests that tariff reductions in and of themselves could be a useful tool for lowering shipping prices facing Latin American importers. US trading routes have higher volumes and more carriers competing than on Latin American trade routes. In this case, doubling the number of carriers reduces shipping costs by 6 to 9 percent. In Latin America, doubling the number of carriers reduces shipping costs by 13 to 16 percent.

Robustness

In our model the positive correlation between tariffs and shipping prices occurs because tariffs raise the delivered price of the product and enable the carrier to charge higher markups. An alternative interpretation is that shipping is subject to economies of scale so that an increase in tariffs lowers scale and raises costs. In both cases shipping costs are endogenous to tariffs in an interesting way but for quite different reasons. Can we shed more light on which of these two channels is driving the positive correlation between tariffs and shipping prices?

There are two channels through which shipment scale could affect costs: at the level of the trade route and at the level of individual shipments. Some country pairs have low tariffs resulting in a large volume of trade. This will induce more carriers to enter (with pro-competitive effects on prices) and those carriers will employ larger ships when serving those low tariff, high volume trade routes. If there are important scale economies in ship size, this will lower trade costs. Note however that we control for this channel in the regressions that include country-pair fixed effects.

Shipment scale could also potentially matter across products within a trade route. This would be the case, for example, if an exporting carrier was unable to fill an entire container and so had to pay an extra handling fee to a freight consolidator, or if a carrier shipping 10 containers were to receive a discount relative to a carrier shipping 1 container. To address this issue we have rerun all the regressions reported in Tables 3 and 4 exploiting only variation in the explanatory variables for similarly sized shipments. To do this, we sort our sample by quantity shipped, divide the sample into N (=5,10,20) equal sized bins, and rerun the regressions within each bin. We report our

14 We thank an anonymous referee for pointing out this concern.
15 Stopford (1997, p. 352) reports liner costs for ships of various carrying capacities. Increasing liner capacity more than five-fold (from 1200 to 6500 TEU) results in a less than two-fold increase in per day operating and port call costs. More generally, see Skiba (2007) for estimates of scale economies in shipping at the level of the trade route.
16 Also, if scale were operating through this channel than we would expect to see smaller coefficients tariffs in the country pair fixed effects regressions than in the regressions that omit fixed effects. This holds true in the US sample (though with very small differences in magnitude), but not in the Latin American sample where tariffs are larger and where the cross-route variation in trade scale is much more significant.
baseline regression for the US imports in the N = 10 bin case in Table 5. We find that all variables, including tariffs, enter with the same signs and with similar magnitudes if we look within each bin as when we pool across all bins as in Tables 3 and 4. Experimenting with larger and smaller numbers of bins for the US and Latin American imports yields similar results (results available on request). From this we conclude that the correlation between tariffs and shipping prices is not coming from a scale effect.

We conducted two other, unrelated, robustness checks. If our demand elasticity variables are noisily measured their coefficients will be biased toward zero. We sorted the BW elasticities into high, medium, and low elasticity bins, capturing the high and medium bins with corresponding dummy variables. Results are reported in Table 6. For both the US and Latin American samples results go through as before. Compared to the low elasticity case (the omitted category), both the high and medium elasticity dummies are negative, and the high elasticity dummy is larger in magnitude. That is, higher demand elasticities correspond to lower shipping prices. The interaction terms also work similarly: a larger number of carriers interacts positively with the medium and high elasticity dummies. This implies that a large number of carriers dampens shipping prices to the greatest extent for low elasticity goods.

Finally, we included in our baseline regressions a measure of the time sensitivity of goods in order to capture the importance of air shipping as a competitive alternative to ocean carriers. For neighboring countries surface freight (trucks, railroads) is an additional competitive alternative. We experimented with omitting adjacent countries from our data, and this had no quantitatively important effect on our results.

IV. The Strength of Market Power

Tables 3 and 4 provide strong support for the idea that market power allows ocean carriers to price discriminate across cargoes, charging higher prices when shipping is a smaller portion of the delivered price, and when increases in the delivered price will result in a smaller reduction in import (and therefore transport) demand. Next we examine how important market power is relative to other factors in explaining variation across goods and exporters in shipping prices.
In many trade applications distance is used to proxy for transportation costs. In the US sample, Table 3, we see that a 10% increase in distance shipped raises US transportation prices by 1.7%. Whether distance explains a large or small portion of total variation in shipping prices depends on how much distance varies in the sample. We can show this by calculating the predicted value of shipping prices for exporters at various distances from the US, holding other variables at their means. For example, exporters at 5th, 50th and 95th percentile values of distance are 5904 km, 8829 km and 14,150 km away from the US, respectively.\(^{17}\) The model predicts that, ceteris paribus, the exporter at 14,150 km distance faces shipping prices to the US that are 16 percent higher than an exporter at 5904 km,
\[\frac{f_{DIST95}}{f_{DIST5}} = \left(\frac{DIST95}{DIST5} \right)^{17} = \left(\frac{14150}{5904} \right)^{17} = 1.16, \]
while an exporter at median distance of 8829 km faces prices 5 percent higher than an exporter at 5904 km.

How does this variation compare to that induced by the variables that capture market power? Table 7 reports the estimated coefficient for each variable taken from the seventh columns of Table 3 (for the US) and Table 4 (for Latin America) – this corresponds to the specification without fixed effects, using the Broda-Weinstein elasticity estimates. We report the 95th/5th percentile comparisons and 50th/5th percentile comparisons for each explanatory variable in the table. Values of each variable at 5th, 50th and 95th percentiles – hereafter referred to as “low”, “median” and “high” – are reported in the Table notes.

The elasticity of shipping prices with respect to the import demand elasticity for US imports is estimated to be -0.12 (for SITC 3 digit σ_k values) to -0.22 (for HS 6 σ_k values). In the US data, goods with a low elasticity of import demand have shipping prices that are 22 percent (SITC3) to 47 percent higher (HS6) than goods with a high elasticity of import demand. The range of variation in shipping prices explained is comparable for Latin America.

Tariffs exhibit less variation over goods than we see with product prices or import demand elasticities. However, the elasticity of shipping prices with respect to tariffs is much larger. In the US, high tariff goods face shipping prices that are 17 percent greater than low tariff goods. In Latin America, where tariff variation is greater, high tariff goods face shipping prices 32 percent greater than low tariff goods.

\(^{17}\) Note that trade with Canada and Mexico generally moves by surface freight and so is largely excluded from our ocean cargo sample. A distribution of distance that included these countries would be considerably left-shifted relative to what we report here.
The elasticity of shipping prices with respect to the number of carriers is much greater in Latin America than in the US, but there is less variation in the number of carriers. As a result, number of carriers explains a comparable amount of variation in shipping prices in both samples. Exporters with a small number of carriers (1 for the US, 2 for Latin America) face shipping prices that are 22-23 percent higher than exporter with a high number of carriers (32 for the US, 8 for Latin America). Our other variable measuring competition – time sensitivity – explains very little of total variation in US shipping prices.

Finally, there is enormous variation across goods in factory prices measured in units of dollars per kg (compare microchips to cement), and this results in considerable variation across goods in shipping prices. Goods with high factory prices have shipping prices 9.5 (Latin America) to 7.6 (US) times greater than goods with low factory prices. As we argue above, some of the difference in shipping prices may reflect differences in the marginal cost of providing shipping services of variable quality, but this may also reflect market power effects. While we cannot definitively separate the two effects we can provide some insights by relating the magnitudes to some specific instances (insurance and use of air shipping) in which product prices are known to affect shipping prices.

Insurance premia are positively correlated with goods prices and a component of our total shipping bill. For some of our Latin American data we can separate the insurance component. For the typical (median) product, insurance represent 0.1% of shipment value, and 3% of the shipping bill. This is much too small to generate a factor 9.5 variation in shipping prices. Furthermore, the price elasticities of freight rates diminish only marginally when we estimate equations (15) and (16) on the restricted sample using freight rates net of the insurance charges. In the US data we can identify shipments (at the level of exporter x HS 6 product) in which both air and ocean shipping are employed. For the median good the air premium is 4.5% ad-valorem, or 2.6 times greater than ocean value (though there is considerable variation across products in this ratio). In other words, suppose we were to ascribe all of the measured effect of product prices on shipping prices to variation in marginal costs of shipping. One would have to believe that differences in the marginal cost of ocean shipping two different goods using a very similar containerization technology is much greater than the cost variation in moving from ocean to air shipping for the same good.

To summarize, using distance as a proxy for transportation costs has become commonplace, but it explains relatively little of the variation in shipping prices. Each of our variables that clearly
indicate market power (import demand elasticity, tariffs, number of carriers) has an effect comparable to or larger than distance. Product prices, which likely capture a combination of marginal costs of shipping and market power, explain variation in shipping prices an order of magnitude larger than that explained by distance variation.

V. Market Power and Shipping Prices in Developing Countries

Table 1 shows that Latin American importers face higher shipping prices than do US importers, and developing country exporters face higher shipping prices into most import markets. We next use our estimates to identify how much of this effect is due to the exercise of market power in the shipping industry.

We compare non-OECD to OECD exporters shipping into each import market. We re-estimate the model from equations (14) and (16) for the US and Latin American samples, with two differences. One, the dependent variable is the ad-valorem (rather than per kg) shipping price. This makes it easier to think in terms of the effect of shipping on the delivered price of the product, and also helps us to explain the observed differences in freight expenditures relative to import values reported in Table 1. Two, we include separate intercepts for OECD and non-OECD exporters to capture differences in the level of costs that we cannot attribute to explicitly measured variables. This yields

US Imports

\[
\ln \left(\frac{f_{jkt}}{p_{jkt}} \right) = \alpha_i - 3.36 - .12 OECD_j - .11 \ln \sigma_k - .47 \ln p_{jkt} + 1.35 \ln \tau_{jkt} - 0.01 \ln TIME_k + .14 \ln DIST_j - .04 \ln n_j
\]

Latin America:

\[
\ln \left(\frac{f_{ijk}}{p_{ijk}} \right) = -2.1 - .10 OECD_j - .10 \ln \sigma_k - .49 \ln p_{ijk} + 1.34 \ln \tau_{ijk} - .05 \ln TIME_k + .03 \ln DIST_{ij} - .15 \ln n_{ij}
\]

\footnote{Coefficients on all variables except product prices are the same whether shipping prices are expressed on a per kg, or on an ad-valorem basis. Since we have effectively subtracted ln(p) from both sides, the coefficient on product prices in the ad-valorem regression is -1 smaller than in the per kg regressions. That is, higher product prices result in higher per kg shipping prices with an elasticity of roughly 0.5, and lower ad-valorem shipping prices with an elasticity of roughly -0.5.}
We can now attribute differences between OECD and non-OECD exporters to differences in the intercepts plus difference in shipment characteristics, that is, differences in the average product price, demand elasticity, tariff, distance, and number of carriers for the two groups. Table 8 reports for each variable the mean differences between non-OECD and OECD exporters in the explanatory variables. In the US sample, non-OECD prices are lower, $\bar{P}_{\text{non-oecd}} / \bar{P}_{\text{oecd}} = .61$. To get the difference between shipping prices from OECD and non-OECD exporters attributable to differences in product prices, we calculate, $-.47 (\ln p_{\text{non-OECD}} - \ln p_{\text{OECD}}) = .244$ and similarly for each explanatory variable. Summing over all the differences in explanatory variables, plus the difference in the intercept, yields the total difference in mean shipping prices facing OECD and non-OECD exporters.

For the US, ad valorem shipping prices from non-OECD exporters are 1.41 times shipping prices from OECD exporters (log difference equal to .376). Of this, 62 percent comes from OECD exporters having higher prices, 7 percent comes from OECD exporters being served by more carriers and 6 percent comes from OECD exporters being closer to the US.\(^{19}\) Most of the remaining difference, or 32 percent, represents higher non-OECD shipping prices conditional on the other variables. The import demand elasticity plays very little role here because the average values for the elasticity are quite similar for the OECD and non-OECD.

For the Latin American import sample, non-OECD exporters have shipping prices 1.4 times larger than OECD exporters (log difference of .339). Of this, 72 percent come from OECD exporters shipping higher priced goods, and the primary remaining effect (29 percent) comes form the OECD intercept.

Next we decompose the difference in shipping prices into the US import market compared to the Latin American import markets. To decompose the sources of this difference we first estimate equation (14) on a pooled sample for the US and Latin America in 2000,

$$\ln \left(\frac{F_{ijk}}{P_{ijk}} \right) = 3.16 - .09 \ln \sigma_k - .49 \ln p_{ijk} + 1.21 \ln \tau_{ikt} - .04 \ln TIME_k + .13 \ln DIST_{ij} - .08 \ln n_{ij}$$

\(^{19}\) China is a large outlier in the number of shippers serving the market. If we drop China from the calculation, the number of shippers serving non-OECD/OECD markets = 0.41 and number of shippers explains 10 percent of the difference in shipping costs.
Latin American importers face shipping prices that are, on average, 1.3 times that of the US as importer (log difference .265). 44 percent of this difference is due to Latin American importers imposing higher tariffs on goods, 29 percent is due to the smaller number of carriers operating on Latin American routes, 12 percent is due to Latin American countries being further from their export sources, and 23 percent is due to the US buying higher priced products.

VI. Trade Volumes: A Back of the Envelope Calculation

As a final exercise we calculate the reduction in trade volumes that results from cargo carriers pricing above marginal cost. Starting from the import demand equation (3), express the actual volume of trade relative to a counterfactual quantity of trade that would taken place had carriers priced at marginal cost

\[\frac{q_s}{q_s^*} = \left(\frac{p_s \tau_s + f_s}{p_s \tau_s + c_s} \right)^{-\sigma} \]

where \(q_s^* \) is the counterfactual quantity of trade with marginal cost shipping prices, and the subscript \(s \) denotes shipment. The dimensionality of this variable depends on the data in question. For our Latin American data, \(s \) represents importer \(i \), exporter \(j \), commodity \(k \). For the US data, \(s \) represents exporter \(j \), commodity \(k \), time \(t \).

We do not observe the marginal cost of shipping, but we can approximate it by manipulating our empirical specification for shipping prices. The shipping price for shipment \(s \) is empirically specified in equations (14) and (16). Ignoring the interaction term the equation can be rewritten as

\[f_s = e^{\alpha \beta_s \text{TIME}^{\beta_s} \text{DIST}^{\beta_s} \tau_s^{\beta_s} \sigma_s n_s^{\beta_s} \epsilon_s} \]

Three variables, the elasticity of import demand, tariff, and the number of carriers affect only the markup. That is to say, theoretically the shipping price equals marginal cost only if the elasticity and the number of carriers are infinitely large and tariff is equal to one. We approximate this by choosing very large (99th percentile) values for the import demand elasticity and the number of carriers and very small values (1st percentile) for tariffs. Our approximation of marginal cost is then

\[c_s = \left[e^{\alpha \beta_s \text{TIME}^{\beta_s} \text{DIST}^{\beta_s}} \right] \left[\tau_s^{\beta_s} \sigma_s n_s^{\beta_s} \right] e^{\epsilon_s} \]
The error term from the estimation is equal to the actual shipping price relative to the fitted shipping price from the empirical model, or

\[e^s = \frac{f_s}{e^{\alpha \beta s_T \sigma}} \]

Substituting the error term into the cost equation and simplifying gives us

\[f_s = c_s \left(\frac{\tau_{s_1} \sigma_{s_2} n_{s_3}}{\tau_{s_1} \sigma_{s_2} n_{s_3}} \right) \]

Strictly speaking the term in brackets is not precisely the shipping markup over marginal cost. Rather it is the ratio of the observed values \(\tau_{s_1} \sigma_{s_2} n_{s_3} \) that affect markups for a particular shipment \(s \) and the values for the smallest markup we can see in our data \(\tau_{s_1} \sigma_{s_2} n_{s_3} \). The true markup over marginal cost for shipment \(s \) must be at least this large.

We can now construct a counterfactual volume of trade for each shipment \(s \):

\[\frac{q_s}{q^*} = \left(\frac{p_s \tau_s + f_s}{p_s \tau_s + f_s \tau_{s_1} \sigma_{s_2} n_{s_3}} \right)^{-\sigma_s} \]

This calculation provides a conservative estimate of the size of the markup and the corresponding effect on trade volumes. First, we attribute all of the effect of higher product prices on higher shipping prices to marginal cost differences and none to markup differences. Second, we choose values for \(\sigma, n \) that are at the high end of those observed in the data, rather than choosing some infinite value. The counterfactual is then equivalent to the following: suppose all shipments were charged the same markup as the smallest observed markup in the data. How much lower would shipping prices be, and how much higher would be the resulting trade volumes?

The summary of estimated markups and counterfactual trade volumes amounts of trade are as follows. For US imports, shipping prices for the mean shipment are 1.58 times higher than

20 Our trade volume calculation employs a useful property of the quasi-linear utility function we initially assumed. Lowering delivered prices by 1 percent yields a \(\sigma \) percentage increase in trade volumes even if all exporters have similar price declines. That is, expenditures on the imported goods grow while expenditures on the numeraire shrink. In a standard model with CES utility over the imported goods and no numeraire, changes in delivered prices would shift expenditures from one exporting source relative to another, or relative to the domestic versions of the imported good.
prices for the lowest markup shipment (standard deviation of 0.19). In ad-valorem terms shipping markups result in delivered prices that are 1.033 times higher for the mean shipment (stdev = .04), resulting in trade volumes that are 7.5 percent lower. These calculations weight all observations equally, and the aggregate results are somewhat smaller. Aggregate freight expenditures as a percentage of imports would drop by 1.2 percentage points, from 4.3 to 3.1 percent ad-valorem, if shipping prices for each shipment were lowered to reflect the smallest observed markup. This would lead to a 5.88 percent increase in trade.21

For Latin American imports, shipping prices for the mean shipment are 1.77 times higher than prices for the lowest markup shipment, with a standard deviation of .25. In ad-valorem terms shipping markups result in delivered prices that are 1.027 times higher for the mean shipment (stdev = .03), resulting in trade volumes that are 19.7 percent lower. Aggregate results are similar. Aggregate freight expenditures as a percentage of imports would drop from 5.2% to 2.7%, if shipping prices for each shipment were lowered to reflect the smallest observed markup. This would lead to a 15.2% percent increase in trade.

Shipping prices inclusive of markups are much larger (58 percent for US imports, 77 percent for Latin America) than would be observed for the shipment with the smallest markup, which implies that the total markup is larger still. Is this plausible? Recall from the modeling section (p.9-10) that, for a monopoly carrier, markups 6 times marginal cost can be generated under plausible parameter values.

VII. Conclusion

Many recent papers have focused on the importance of transportation costs, or more simply distance, in shaping trade flows. A common feature of these papers is the assumption of Samuelson iceberg shipping cost in which ad-valorem shipping costs are treated as an exogenous constant, and most typically captured solely by the distance between markets. We get inside the black box of the transportation industry to show how the exercise of market power drives much of the variation in shipping prices.

21 The “before” aggregate ad-valorem numbers do not match those from Table 1 for two reasons. One, we focus here only on waterborne shipments. Two, due to data availability constraints we have reduced the sample of countries and goods on which this calculation can be performed.
Our test of market power in the shipping industry focuses on the ability of ocean cargo carriers to price discriminate across products. The elasticity of demand facing a carrier is a function of the elasticity of import demand and the degree to which changes in shipping prices affect the final delivery price of a product. Carriers can charge especially large markups on goods whose import demand is relatively inelastic, and on those goods where the marginal cost of shipping represents a small percentage of delivered prices. That is, increases in factory gate product prices and increases in tariffs give carriers more room to price discriminate. Further, a larger number of carriers competing on a route lowers both the level of shipping prices and the ability of carriers to price discriminate across products.

These theoretical predictions are strongly supported by shipping data taken from US and Latin American imports. Shipping prices are increasing in product prices and tariffs, and decreasing in the elasticity of import demand, the number of carriers on a route, and the intensity of competition coming from air cargo carriers. Each of these market power variables has an impact on shipping prices equal to or greater than the effect of shipping cargoes greater distances.

Our findings suggest that high transportation costs in the developing world are not an unfortunate technological fact of life, and provide two important policy implications. First, because the demand facing the shipping industry as whole can be highly inelastic even a little entry can go a long way in reducing market power and markups in shipping. The recent decision by the EU Competitiveness Council to bar cargo carriers from participating in liner conferences and from colluding on price and market share agreements is worth watching in this regard. Second, high tariffs are especially harmful to trade. They directly increase the delivered price of traded goods and indirectly lead to increased shipping markups. We estimate that a 1% increase in tariffs leads to a 1-2% increase in shipping prices per kg. This effect is especially pronounced in Latin America where tariffs are much larger and more variable to begin with. Cutting these tariffs would yield a double dose of trade growth for liberalizing countries.

References.

Hummels, David (2001) “Toward a Geography of Trade Costs”, Purdue University, mimeo

Hummels, David and Schaur, Georg (2007) “Time as a Trade Barrier”, Purdue University, mimeo

Appendix: Estimating the Price Elasticity of Demand for Imports

A key parameter for our study is the import elasticity of demand σ_k and its variance over products. This parameter can be thought of either as the own-price elasticity of demand for a particular good from a particular exporter, or as the degree of substitutability between varieties of good k being exported from two or more distinct exporters.

Identifying σ_k requires us to estimate the slope of a demand curve using some variation in prices. Broda-Weinstein (2006) estimate values for σ_k using a procedure developed by Feenstra (1994) to analyze a simultaneous system of export supply and import demand. The procedure exploits time series variation in the quantity shares of exporter j selling product k to the US market as a function of time series variation in the price of j-k. This approach has advantages and disadvantages. One advantage is that it allows for slope in the export supply curve rather than assuming that exporters have a constant marginal cost. That is, changes in the exchange rate and in trade costs are partially absorbed in the form of changes in an exporter’s factory gate price (the product price exclusive of trade costs denominated in the exporter’s currency). A disadvantage is that identification of the parameters of interest requires that there are no simultaneous shocks to the error terms in the supply and demand equations. This is a condition that would be met if, for example, the price shocks are caused by exogenous time series movements in the exchange rate. The Broda-Weinstein estimates seem sensible, and are becoming something of an industry standard for studies that require an estimate of the price elasticity of import demand.

We employ BW values while also estimating σ_k values of our own using a different identification method. Our method follows Hummels (2001) and identifies the slope of the import demand curve using variation in trade costs. It allows us to better match our estimates of σ_k to the level of aggregation, transportation mode, country sample, and time period that we employ in our shipping price regressions. If σ_k varies across level of aggregation, mode, country or period, our estimates will provide better information about the elasticity of import demand facing a ocean carrier as it makes pricing decisions.

Put another way, consider the thought experiment we are conducting. An ocean carrier wants to know: if I raise my price by 1%, how much cargo will I lose? Given the simple model laid out in the theory section, anything that raises product prices might be useful for identifying the quantity responses. This could include shocks to the exchange rate which are ideal for identifying elasticities in the Feenstra/ Broda-Weinstein method. But stepping outside the model, the quantity response to an exchange rate shock in the US import time series might look different than a ocean quantity response to variation in shipping prices or tariffs in a Latin American cross-section. US and Latin American markets may differ in their demand responsiveness (see Hummels-Lugovskyy NBER 11828) and producers and consumers may react differently to price shocks based on whether they are anticipated or unanticipated, temporary or permanent, or hedge-able through financial markets. Critically, since we are focused on ocean shipping, the quantity response might include modal substitution toward air.

Our identification technique works as follows. Equation (3) in the text captures quantity demanded by a single representative consumer in importer j for a single variety from exporter j. Rewrite this to reflect variation across products k in prices, trade costs and the elasticity of import demand.
(20) \[q_{ijk} = \left[\frac{\sigma}{\sigma - 1} p_{jk} \phi_{ijk} \right]^{-\sigma_k} \]

where the last term in the brackets \(\phi_{ijk} = \tau_{ijk} + \frac{f_{ijk}}{p_{jk}} \) is total ad-valorem trade costs. In the case where product quality varies across exporting sources, this can be further augmented to include a price-equivalent quality shifter of the form.

(21) \[q_{ijk} = \left[\frac{\sigma}{\sigma - 1} p_{jk} \phi_{ijk} \right]^{-\sigma_k} \left(\lambda_{jk} \right)^{\sigma_k} \]

Trade flows between individual consumers and firms are not observable in our data, so to get something observable (total imports in product k between exporter j and importer i) we multiply both sides by the number of varieties produced by an exporter and the total expenditures of an importer and take logs

(22) \[\ln Q_{ijk} = a + \ln Y_i + \ln n_{jk} + \sigma_k \ln \lambda_{jk} - \sigma_k \ln p_{jk} - \sigma_k \ln \left(\phi_{ijk} \right) \]

where \(Q_{ijk} = n_{jk}q_{ijk} \) are total quantities traded. In our Latin American data we have many importer i-exporter j pairs for each product k. This allows us to run a separate regression for each k (an HS 6 good) of the form

(23) \[\ln Q_{ijk} = \alpha_k + \alpha_{jk} + \alpha_{ijk} - \sigma_k \ln \left(\phi_{ijk} \right) + e_{ijk} \]

In this case, the value of \(\sigma_k \) is identified off the bilateral variation in trade costs. The exporter fixed effects eliminate exporter j-product k specific variation in product prices, and unobserved variation in the number of varieties and product quality. The importer fixed effects eliminate importer i-product k variation in real expenditures. In our simple model with quasi-linear utility this is just real incomes since all prices are written relative to a numeraire. In the more common model with CES preferences there would be an additional CES price index that is i-k specific, but such a term would be differenced out of the estimation of (23) in any case.

Because we have multiple importers for each exporter, we can control for exporter-specific quality variation using a fixed effect. In this case, we eliminate prices from the equation, but we can still identify \(\sigma_k \) through the variation in trade costs. This approach assumes that, for a given HS 6 good k, exporters send identical quality levels to each importer. Suppose instead that quality is i-j-k specific. In this case we must rewrite equation (22) as

\[\ln Q_{ijk} = a + \ln Y_i + \ln n_{jk} + \sigma_k \ln \lambda_{ijk} - \sigma_k \ln p_{ijk} - \sigma_k \ln \left(\phi_{ijk} \right) \]

Our estimating equation becomes

(24) \[\ln Q_{ijk} = d_k + \alpha_{ijk} + \alpha_{jk} + \alpha_{jik} - \sigma_k \ln \left(\phi_{ijk} \right) + e_{ijk} \]

and the coefficient on prices is biased due to unobserved (ijk specific) quality variation that shifts out demand and is correlated with prices. However, our measure of trade costs still cleanly
identifies σ_k. We use equation (24) to estimate σ_k for each HS6 product in the Latin American imports data.

One final problem with our approach is the possibility that each exporter has an upward sloping export supply curve that is specific to each importer. In this case a rise in trade costs from importer i will be partially offset by a reduction in factory gate prices, but only for those goods destined for importer i. In this case, rewrite equation (22) as

$$\ln Q_{ijk} = a + \ln Y_i + \ln n_{jk} + \sigma_k \ln \lambda_{jk} - \sigma_k \ln p_{jk} PTM_{ijk} - \sigma_k \ln \left(\phi_{ijk}\right)$$

where the delivered price includes an exporter-specific component p_{jk} and a destination specific pricing to market adjustment, PTM_{ijk} that is a function of trade costs. Employing exporter-product fixed effects yields

$$\ln Q_{ijk} = a_k + \alpha_{ik} + \alpha_{jk} - \sigma_k \ln \left(\phi_{ijk}\right) + \epsilon_{ijk}$$

$$\epsilon_{ijk} = -\sigma_k PTM_{ijk} + \eta_{ijk}$$

The pricing to market adjustment is an omitted variable that is correlated with both trade quantities and with trade costs. Our estimate on the trade cost variable will be $\hat{\sigma}_k = \sigma_k (1 - \gamma_k)$, where γ_k is the elasticity of the PTM adjustment with respect to trade costs. Now, suppose that pricing to market adjustment is the same across all goods, $\gamma_k = \gamma$ so that all our elasticity estimates are too small by γ percent. Since we are running a regression of log shipping prices on log σ_k the PTM adjustment is like a change in units and has no effect on our results. Suppose γ_k isn’t constant, but varies across goods in a way that is uncorrelated with σ_k. That is, looking across goods there is not a correlation between the slopes of the import demand and export supply curves. In that case we have noisy σ_k values, and attenuation will bias the coefficient on σ_k in the shipping price regression toward zero, i.e. away from us finding the model’s predicted negative correlation between shipping prices and σ_k.

For the US imports we do not have multiple importers but we do have a time series and we have multiple (HS 10) observations per HS6 product. Rewriting (22) to reflect this we have

$$\ln q_{jt,gk} = a + \ln Y_t + \ln n_{jk} + \sigma_k \ln \lambda_{jk} - \sigma_k \ln p_{jt,gk} - \sigma_k \ln \left(\phi_{jt,gk}\right)$$

Where $g \in k$ means that we pool over all HS 10 products g within a given HS 6 classification, and we assume that exporter quality and number of varieties are symmetric within an HS 6. We can then estimate this separately for each HS6 and use exporter fixed effects to yield

$$(25) \quad \ln q_{jt,gk} = a_t + \alpha_{jk} + \beta_{jk} \ln p_{jt,gk} - \sigma_k \ln \left(\phi_{jt,gk}\right)$$

Using an exporter fixed effect eliminates the time-invariant components of quality, prices, and number of varieties. If we believed that quality was time invariant we could read the coefficient
directly off the price term to get σ_k. If we do not believe this, we can still read the coefficient in front of trade costs to get σ_k (subject to the concerns noted above regarding a potential pricing to market adjustments).

We can either use quantities on the left hand side of equations (24) and (25), or we can multiply by both sides of the equation and use values. This increases the predicted coefficient on prices by 1, but does not otherwise change the estimating equation. We use import values since they tend to be measured with less noise than import quantities.

In the US imports data, after we restricted our attention to the HS 6-digit categories with at least 50 observations we were left with 4756 separate estimates of elasticity. Out of these, we are able to estimate elasticities in the theoretically sensible range (smaller than -1) and statistically significant in 3750 cases. Using quantities as a dependent variable instead yields only 2321 usable estimates, but the correlation coefficient of 0.88 between these and the elasticities estimated using values as a dependent variable. Similarly for Latin America, we start with 4585 goods for which we have at least 50 observations, and estimate statistically significant elasticities smaller than -1 in 2877 cases.
Figure 1

\[\ln(n_j) = -4.96 + 0.25 \ln(GDP_j) \]

\(N = 95 \quad R^2 = 0.42 \)
Table 1 The Importance of Transportation Costs.

<table>
<thead>
<tr>
<th>Aggregate freight expenditures (% of imports value)</th>
<th>US</th>
<th>Argentina</th>
<th>Bolivia</th>
<th>Brazil</th>
<th>Chile</th>
<th>Ecuador</th>
<th>Paraguay</th>
<th>Peru</th>
<th>Uruguay</th>
</tr>
</thead>
<tbody>
<tr>
<td>All exporters</td>
<td>3.5%</td>
<td>5.9%</td>
<td>8.4%</td>
<td>5.7%</td>
<td>8.1%</td>
<td>9.2%</td>
<td>9.7%</td>
<td>8.5%</td>
<td>5.8%</td>
</tr>
<tr>
<td>OECD exporters</td>
<td>2.6%</td>
<td>5.7%</td>
<td>8.6%</td>
<td>5.2%</td>
<td>6.8%</td>
<td>8.4%</td>
<td>9.9%</td>
<td>8.3%</td>
<td>6.7%</td>
</tr>
<tr>
<td>Non-OECD exporters</td>
<td>4.5%</td>
<td>6.2%</td>
<td>8.1%</td>
<td>6.2%</td>
<td>9.6%</td>
<td>10.1%</td>
<td>9.4%</td>
<td>8.6%</td>
<td>5.5%</td>
</tr>
<tr>
<td>Freight bill as a % of total trade costs (1)</td>
<td>85%</td>
<td>31.3%</td>
<td>45.7%</td>
<td>31.0%</td>
<td>42.4%</td>
<td>45.5%</td>
<td>63.0%</td>
<td>39.5%</td>
<td>31.5%</td>
</tr>
<tr>
<td>Coefficient of variation in ad-valorem transportation costs across goods (2)</td>
<td>1.4</td>
<td>5.24</td>
<td>1.83</td>
<td>1.34</td>
<td>1.70</td>
<td>1.68</td>
<td>1.64</td>
<td>1.28</td>
<td>1.59</td>
</tr>
<tr>
<td>Coefficient of variation in ad-valorem transportation costs across exporters (3)</td>
<td>.89</td>
<td>.82</td>
<td>.71</td>
<td>.95</td>
<td>.81</td>
<td>.86</td>
<td>.72</td>
<td>.82</td>
<td>.59</td>
</tr>
</tbody>
</table>

Notes:
1. For each importer, calculate ad-valorem transportation expenditures for each exporter j-HS6 product k as \(g_{jk} = \frac{F_{jk}}{p_{jk}} = \frac{F_{jk}}{PQ_{jk}} \). Ad-valorem tariff is \(\tau_{jk} \). \(g_{jk}/(g_{jk} + \tau_{jk}) \) is freight bill as a percentage of total trade costs for each exporter j-HS6 product k. Table entry reports median values of this statistic (over all j-k) for each importer.
2. The Coefficient of variation is \(\text{c.o.v.}(g_{jk}) = \frac{\text{stdev}(g_{jk})}{\text{mean}(g_{jk})} \). Table reports median value of \(\text{c.o.v.}(g_{jk}) \) over all jk for each importer.
3. For each importer, calculate ad-valorem transportation expenditures for each exporter j-HS6 product k, relative to product k means as \(h_{jk} = \frac{g_{jk}}{(g_k)} \). The coefficient of variation is \(\text{c.o.v.}(h_{jk}) = \frac{\text{stdev}(h_{jk})}{\text{mean}(h_{jk})} \). The table reports median values of \(\text{c.o.v.}(h_{jk}) \) over all jk for each importer.
<table>
<thead>
<tr>
<th>Key variables</th>
<th>Oligopoly with fixed number of carriers</th>
<th>Marginal cost pricing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Import Demand Elasticity σ</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Distance, d_{ij}</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Factory price, p_j</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tariff, $1+\tau_{ij}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Number of carriers, n_{ij}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Interaction Term, $\sigma \times n_{ij}$</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 3. Ocean Cargo Prices and Market Power, US Imports

<table>
<thead>
<tr>
<th>Dependent variable: Ocean Shipping Costs per Kilogram $\ln f_{jik}$</th>
<th>HS 6 demand elasticities (our estimates)</th>
<th>SITC 3 digit demand elasticities (Broda-Weinstein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Price $\ln p_{jik}$</td>
<td>.57 (.001)</td>
<td>.57 (.001)</td>
</tr>
<tr>
<td>Import Demand Elasticity $\ln (\sigma_k)$</td>
<td>-.20 (.002)</td>
<td>-.201 (.002)</td>
</tr>
<tr>
<td>Tariff $\ln(1 + \tau_{jik})$</td>
<td>1.11 (.020)</td>
<td>1.108 (.020)</td>
</tr>
<tr>
<td>Time Sensitivity $\ln(time_k)$</td>
<td>-.015 (.001)</td>
<td>-.023 (.001)</td>
</tr>
<tr>
<td>Number of Shippers $\ln (n_j)$</td>
<td>-.053 (.001)</td>
<td>-.078 (.001)</td>
</tr>
<tr>
<td>Interaction $\ln (n_j) \times \ln (\sigma_k)$</td>
<td>.013 (.002)</td>
<td>.019 (.002)</td>
</tr>
<tr>
<td>Distance $\ln (dist_j)$</td>
<td>.179 (.002)</td>
<td>.179 (.002)</td>
</tr>
<tr>
<td>Exporter-year fixed effects</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Adj-R2</td>
<td>.46</td>
<td>.46</td>
</tr>
<tr>
<td>n-obs</td>
<td>596,655</td>
<td>637,427</td>
</tr>
</tbody>
</table>

Notes:
1. Table contains estimates of equations (13) and (14), data from US Imports of Merchandise, ocean-borne imports only. See appendix for estimation procedure for import demand elasticities.
2. Standard errors in parentheses.
3. Sample includes only those exporters for which data on “n” are available.
Table 4. Ocean Cargo Prices and Market Power, Latin American Imports

<table>
<thead>
<tr>
<th>Dependent variable: Ocean Shipping Costs per Kilogram ln f_{jtk}</th>
<th>HS 6 demand elasticities (our estimates)</th>
<th>SITC 3 digit demand elasticities (Broda-Weinstein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Price ln p_{jtk}</td>
<td>0.548 (0.002)</td>
<td>0.537 (0.002)</td>
</tr>
<tr>
<td>Import Demand Elasticity ln (σ_k)</td>
<td>-0.182 (0.004)</td>
<td>-0.169 (0.005)</td>
</tr>
<tr>
<td>Tariff ln ($1 + \tau_{jtk}$)</td>
<td>2.00 (0.057)</td>
<td>2.047 (0.062)</td>
</tr>
<tr>
<td>Time Sensitivity ln ($time_k$)</td>
<td>-0.048 (0.003)</td>
<td>-0.055 (0.003)</td>
</tr>
<tr>
<td>Number of Shippers ln (n_j)</td>
<td>-0.129 (0.004)</td>
<td>-0.129 (0.017)</td>
</tr>
<tr>
<td>Interaction ln (n_j) × ln (σ_k)</td>
<td>0 (0.000)</td>
<td>0 (0.000)</td>
</tr>
<tr>
<td>Distance ln ($dist_j$)</td>
<td>0 (0.000)</td>
<td>0 (0.000)</td>
</tr>
<tr>
<td>Exporter-year fixed effects</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Adj-R²</td>
<td>0.59</td>
<td>0.58</td>
</tr>
<tr>
<td>n-obs</td>
<td>61053</td>
<td>53303</td>
</tr>
</tbody>
</table>

Notes:
1. Table contains estimates of equations (15) and (16), data from BTI database, ocean-borne imports only. See appendix for estimation procedure for import demand elasticities.
2. Standard errors in parentheses.
3. Sample includes only those exporters for which data on “n” are available.
Table 5. Regression Results Within Quantity Strata

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Price</td>
<td>.613 (.003)</td>
<td>.466 (.003)</td>
<td>.46 (.003)</td>
<td>.452 (.003)</td>
<td>.463 (.003)</td>
<td>.464 (.003)</td>
<td>.462 (.003)</td>
<td>.454 (.003)</td>
<td>.467 (.003)</td>
<td>.549 (.002)</td>
</tr>
<tr>
<td>Import Demand</td>
<td>-.046 (.008)</td>
<td>-.078 (.006)</td>
<td>-.091 (.006)</td>
<td>-.093 (.005)</td>
<td>-.1 (.005)</td>
<td>-.086 (.004)</td>
<td>-.089 (.004)</td>
<td>-.079 (.004)</td>
<td>-.098 (.003)</td>
<td>-.123 (.004)</td>
</tr>
<tr>
<td>Tariff</td>
<td>.883 (.071)</td>
<td>.848 (.066)</td>
<td>.988 (.062)</td>
<td>.983 (.060)</td>
<td>.992 (.061)</td>
<td>.991 (.052)</td>
<td>.991 (.047)</td>
<td>1.015 (.044)</td>
<td>1.027 (.041)</td>
<td>1.107 (.056)</td>
</tr>
<tr>
<td>R²</td>
<td>.29</td>
<td>.2</td>
<td>.25</td>
<td>.28</td>
<td>.35</td>
<td>.41</td>
<td>.46</td>
<td>.48</td>
<td>.53</td>
<td>.57</td>
</tr>
<tr>
<td>n-obs</td>
<td>79921</td>
<td>79922</td>
<td>79921</td>
<td>79922</td>
<td>79921</td>
<td>79922</td>
<td>79921</td>
<td>79922</td>
<td>79921</td>
<td>79922</td>
</tr>
</tbody>
</table>

Notes:
1. Table contains estimates of equation (13) data from US Imports of Merchandise, ocean-borne imports only. The quantity strata are constructed by sorting all observations by quantity shipped and then separating these observations into 10 equal sized bins.
2. Import demand elasticities are from Broda and Weinstein (2006)
3. All specifications include bilateral pair fixed effects
Table 6. Using High-Medium-Low Elasticity Bins

<table>
<thead>
<tr>
<th>Dependent variable: Ocean Shipping Costs per Kilogram $\ln f_{jtk}$</th>
<th>US Imports</th>
<th>Latin American Imports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Price, $\ln p_{jtk}$</td>
<td>.54 (.001)</td>
<td>.53 (.001)</td>
</tr>
<tr>
<td>Medium Elasticity FE, D_{med}</td>
<td>-0.02 (0.002)</td>
<td>-0.04 (0.005)</td>
</tr>
<tr>
<td>High Elasticity FE, D_{high}</td>
<td>-0.07 (0.003)</td>
<td>-0.12 (0.006)</td>
</tr>
<tr>
<td>Tariff, $\ln (1 + \tau_{jtk})$</td>
<td>1.16 (0.020)</td>
<td>1.27 (0.020)</td>
</tr>
<tr>
<td>Time Sensitivity $\ln (\text{time}_t)$</td>
<td>-.007 (0.001)</td>
<td>-.014 (0.001)</td>
</tr>
<tr>
<td>Number of Shippers, $\ln (n_y)$</td>
<td>-.070 (0.002)</td>
<td>-.16 (0.006)</td>
</tr>
<tr>
<td>Interaction $D_{med} \times \ln (n_y)$</td>
<td>.015 (0.007)</td>
<td></td>
</tr>
<tr>
<td>Interaction $D_{high} \times \ln (n_y)$</td>
<td>.024 (0.003)</td>
<td></td>
</tr>
<tr>
<td>Distance $\ln (\text{dist}_{ij})$</td>
<td>.169 (0.002)</td>
<td>0.042 (0.005)</td>
</tr>
<tr>
<td>Exporter-year fixed effects</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Adj-R²</td>
<td>.46</td>
<td>.44</td>
</tr>
<tr>
<td>n-obs</td>
<td>637,427</td>
<td>64,643</td>
</tr>
</tbody>
</table>

Notes:
1. Table contains estimates of equations (13) and (14), for the US imports, and estimates of equations (15) and (16) for Latin American imports, ocean-borne imports only.
2. Standard errors in parentheses.
3. Sample includes only those exporters for which data on “n” are available.
4. SITC 3 digit demand elasticities (Broda-Weinstein). Medium import demand elasticity dummy is equal to one if $1.68 < \sigma_k \leq 2.79$ and zero otherwise, high import demand elasticity dummy is equal to one if $2.79 < \sigma_k$ and zero otherwise.
Table 7. Explaining Variation in Shipping Costs per kg
Contribution of Explanatory Variables

<table>
<thead>
<tr>
<th></th>
<th>Product Price</th>
<th>Import Demand Elasticity (SITC 3-digit)</th>
<th>Import Demand Elasticity (HS 6)</th>
<th>Tariff</th>
<th>Time Sensitivity</th>
<th>Number of shippers</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Imports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated Elasticity</td>
<td>.52</td>
<td>-.12</td>
<td>-.22</td>
<td>1.35</td>
<td>-.01</td>
<td>-.07</td>
<td>.17</td>
</tr>
<tr>
<td>(\frac{f(X_{50\text{ptile}})}{f(X_{5\text{ptile}})})</td>
<td>3.58</td>
<td>.92</td>
<td>.81</td>
<td>1.03</td>
<td>.98</td>
<td>.86</td>
<td>1.05</td>
</tr>
<tr>
<td>(\frac{f(X_{95\text{ptile}})}{f(X_{5\text{ptile}})})</td>
<td>7.58</td>
<td>.82</td>
<td>.68</td>
<td>1.17</td>
<td>.96</td>
<td>.81</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latin American Imports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated Elasticity</td>
<td>.51</td>
<td>-.10</td>
<td>-.18</td>
<td>1.35</td>
<td>-.048</td>
<td>-.14</td>
<td>.042</td>
</tr>
<tr>
<td>(\frac{f(X_{50\text{ptile}})}{f(X_{5\text{ptile}})})</td>
<td>3.18</td>
<td>.93</td>
<td>.86</td>
<td>1.21</td>
<td>.93</td>
<td>.88</td>
<td>1.06</td>
</tr>
<tr>
<td>(\frac{f(X_{95\text{ptile}})}{f(X_{5\text{ptile}})})</td>
<td>9.46</td>
<td>.87</td>
<td>.71</td>
<td>1.32</td>
<td>.87</td>
<td>.82</td>
<td>1.09</td>
</tr>
</tbody>
</table>

Notes:
1. Estimated elasticities taken from 7th columns of Tables 3, 4
2. For each column calculate the predicted freight rate for 5th, 50th, and 95th percentile values of the explanatory variable weighted by value of trade, holding other variables at means. \(f(X_{95\text{ptile}})/f(X_{5\text{ptile}})\) then reports the ratio of freight rates at the 95th and 5th percentiles.
3. The values of each variable at (5th, 50th, and 95th) percentiles are: Import demand elasticity (SITC 3-digit) – US (1.22, 2.53, 6.70), LA (1.22, 2.63, 5.04); Import demand elasticity (HS 6) – US (3.23, 9.10, 16.50), LA (3.37, 7.55, 22.07); Tariff – US (1.102, 1.16), LA (1.115, 1.23); Product price – US (0.92, 10.62, 44.71), LA (0.57, 6.60, 48.06); Distance – US (5904, 8829, 14150), LA (2344, 8733, 18374); Time Sensitivity – US (.18, 79, 2.157), LA (0.21, 0.87, 3.50); Number of shippers – US (2, 15, 32), LA (2, 5, 8).
4. 99th percentile elasticity of substitution (estimated at SITC 3-digit) for Latin America and for US is 25.03.
<table>
<thead>
<tr>
<th>Explanatory variable</th>
<th>OECD intercept</th>
<th>Product Price</th>
<th>Import Demand Elasticity</th>
<th>Tariff</th>
<th>Time Sensitivity</th>
<th>Number of shippers</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Imports Shipments Characteristics: non-OECD exporter means / OECD exporter means</td>
<td>1.41</td>
<td>.61</td>
<td>1.02</td>
<td>.99</td>
<td>.93</td>
<td>0.41</td>
<td>1.13</td>
</tr>
<tr>
<td>Contribution to fitted values</td>
<td>0.376</td>
<td>0.121</td>
<td>0.232</td>
<td>-0.002</td>
<td>-0.008</td>
<td>0.001</td>
<td>0.028</td>
</tr>
<tr>
<td>Contribution to fitted values</td>
<td>(100%)</td>
<td>(32%)</td>
<td>(62%)</td>
<td>(-.5%)</td>
<td>(-2%)</td>
<td>(.2%)</td>
<td>(7%)</td>
</tr>
<tr>
<td>Latin American Imports Shipments Characteristics: non-OECD exporter means / OECD exporter means</td>
<td>1.40</td>
<td>.61</td>
<td>0.96</td>
<td>1.01</td>
<td>.96</td>
<td>1.14</td>
<td>1.17</td>
</tr>
<tr>
<td>Contribution to fitted values</td>
<td>0.339</td>
<td>0.099</td>
<td>0.244</td>
<td>0.004</td>
<td>0.006</td>
<td>0.002</td>
<td>-0.020</td>
</tr>
<tr>
<td>Contribution to fitted values</td>
<td>(100%)</td>
<td>(29%)</td>
<td>(72%)</td>
<td>(1%)</td>
<td>(2%)</td>
<td>(1%)</td>
<td>(-6%)</td>
</tr>
<tr>
<td>Shipment Characteristics: Latin America Imports Mean / US Imports Mean</td>
<td>1.30</td>
<td>.88</td>
<td>.98</td>
<td>1.10</td>
<td>1.05</td>
<td>.37</td>
<td>1.29</td>
</tr>
<tr>
<td>Contribution to fitted values</td>
<td>0.265</td>
<td>0.02</td>
<td>0.060</td>
<td>0.002</td>
<td>0.117</td>
<td>-0.002</td>
<td>0.077</td>
</tr>
<tr>
<td>Contribution to fitted values</td>
<td>(100%)</td>
<td>(8%)</td>
<td>(23%)</td>
<td>(1%)</td>
<td>(44%)</td>
<td>(-1%)</td>
<td>(29%)</td>
</tr>
</tbody>
</table>

Notes:
1. Difference in predicted non-OECD freight rate attributable to product price is calculated as \(\beta_p (\ln p_{non-OECD} - \ln p_{OECD}) \).
2. Calculations based on these regressions (all coefficients significant at 1%, SITC 3 elasticities)
US imports: \(\ln (f/p) = \alpha - 3.36 - 0.12OECD - 0.11 n \sigma - 0.47 \ln p + 1.35 n \tau - 0.01 \ln TIME + 0.14 \ln DIST - 0.04 \ln n \).
Latin American: \(\ln (f/p) = -2.10 - 0.10OECD - 0.10 \ln \sigma - 0.49 \ln p + 1.34 \ln \tau - 0.05 \ln TIME + 0.03 \ln DIST - 0.15 \ln n \)
US v. Latin America imports: \(\ln (f/p) = -3.16 + 0.02US - 0.09 \ln \sigma - 0.49 \ln p + 1.21 \ln \tau - 0.04 \ln TIME + 0.13 \ln DIST - 0.08 \ln n \)